Черные дыры
Главная Обратная связь Добавить в закладки Сделать стартовой

Группа астрономов из института астрономии Гавайев, университета Висконсина, центра космических полетов им. Годдарда и центра космических полетов им. Маршалла в своем докладе на 20-ом симпозиуме по релятивистской астрофизике от 12 декабря представила результаты исследований сверхмассивных черных дыр.

Сверхмассивные черные дыры излучают во Вселенную гораздо больше энергии, чем все звезды вместе взятые. Многие из них сформировались не так давно. Они составляют всего лишь небольшую часть удаленных экзотических объектов, образующих то, что астрономы называют рентгеновским фоном, и производящих равномерно распространяющееся через всю Вселенную рентгеновское излучение.

Исследователи считают, что по крайней мере 15 процентов всех сверхмассивных черных дыр сформировалось, когда возраст Вселенной составлял половину ее сегодняшнего возраста. И в настоящее время черные дыры продолжают расти. Это противоречит существовавшей до сих пор теории, основанной на связи между размерами черных дыр и содержащих их галактик и предполагающей, что черные дыры сформировались тогда, когда формировались галактики.

Массы сверхмассивных черных дыр, образующихся в результате коллапса газовых облаков, от миллионов до миллиардов раз превышают массы звезд, а их размеры сравнимы с размерами нашей Солнечной системы. Астрономы полагают, что большинство галактик, включая и нашу собственную, содержат в центре сверхмассивные черные дыры.

Черные дыры считаются "активными", когда на них происходит аккреция больших количеств вещества. Это вещество, нагретое до миллионов градусов под влиянием сильных гравитационных сил, излучает особенно ярко в рентгеновском диапазоне.

Еще в январе 2000 года было объявлено о том, что с помощью рентгеновской обсерватории Chandra в так называемом рентгеновском фоне удалось разрешить отдельные точечные источники - удаленные галактики с активными черными дырами. Были проведены оптические, субмиллиметровые и радио - наблюдения этих источников. Субмиллиметровые и радио - измерения дают информацию о количестве энергии, испускаемой при формировании сверхмассивных черных дыр.

Вычисленные по данным наблюдений интервалы времени, в течении которых формируется и растет черная дыра, оказались намного большими, чем можно было бы ожидать с том случае, если бы эти черные дыры образовывались в результате слияния крупных галактик, как часто предполагалось до сих пор.

Наземные наблюдения проводились на 10-метровом телескопе Keck (оптические) и телескопе Максвелла (субмиллиметровые). Оба телескопа расположены на Гавайях. Радио - наблюдения проводились с помощью Very Large Array Национальной радио обсерватории (National Radio Observatories).



Впервые зарегистрирован выброс энергии из черной дыры.С помощью европейского астрономического спутника XMM-Newton (X- Ray Multimirror Mission), астрофизики смогли впервые зафиксировать энергию, исходящую изнутри черной дыры. Отчет об этом исследовании, проведенном Jorn Wilms из Университета им. Карла Эберхарда в Тюбингеме, Германия, будет опубликован в очередном номере журнала Королевского астрономического общества Великобритании.В июне прошлого года XMM-Newton был сфокусирован на спиральную галактику MCG-6-30-15, отстоящей от нас на расстоянии более 100 миллионов световых лет и в центре которой находится сверхмассивная черная дыра. С помощью двух камер EPIC (European Photon Imaging Cameras) спутника, Wilms и его коллеги получили спектры рентгеновского излучения аккреционного диска вещества вокруг черной дыры (прежде чем упасть на нее и исчезнуть "навечно", вещество скапливается на определенном расстоянии, образуя диск; разница в скоростях слоев диска создает потоки вещества, падающего на дыру). Ученых заинтересовала спектральная линия железа, которая оказалась удивительно широкой и яркой.Исследователи полагают, что излучение газообразного железа, падающего на дыру, относится к внутренней части аккреционного диска (т.е. края, за которым материя падает на черную дыру). На это указывает ширина спектральной линии: фотоны как бы растянуты сильнейшим гравитационным полем, а такое возможно только у событийного горизонта черной дыры, где пространство крайне искривлено. Однако количество испускаемых фотонов и их энергия были настолько значительными, что не могли быть объяснены одним гравитационным эффектом. Иначе говоря, если черная дыра испускает столь сильное рентгеновское излучение, атомы железа обязаны получать энергию из источника, находящегося вне диска, то есть изнутри черной дыры. Черная дыра вращается и подвергается воздействию сильнейших магнитных полей, создаваемых движением газа в аккреционном диске. Наподобие динамо-машины, она направляет энергию к частицам аккреционного диска (к своему внутреннему "краю"), который вращается с немного меньшей скоростью,чем сама дыра. Это и приводит к повышению температуры и провоцирует рентгеновское излучение.В то время как образ черной дыры, поглощающей материю, стал уже тривиальным, образ дыры, испускающей энергию, менее распространен, но не является чем-то совершенно новым. Вращение и трение черной дыры о силовые лини магнитного поля замедляют ее ротацию и вызывают выбросы энергии. Она, в свою очередь, еще больше разогревает вещество диска, что усиливает рентгеновское излучение. Эту идею выдвинули еще четверть века назад два астронома из Кембриджского университета Roger Blandford и Roman Znajek. И эта энергия должна поглощаться окружающим газом. "Наша работа должна быть подтверждена другими наблюдениями", признается Jorn Wilms. Но в случае успеха, речь будет идти о первом подтверждении теории, разработанной многими исследователями. Кроме того, полученные данные являются первым прямым доказательством вращения черных дыр.


Одиночная черная дыра размером меньше Солнечной системы может определять судьбу целого скопления галактикНе советуем вам заглядывать в бездну, из которой вырывается поток энергии от сверхмассивной черной дыры. Под его напором образуются пузыри горячего газа, энергия которых равна миллиардам взрывов сверхновых Если представить себе какую­либо обширную область Вселенной, то она будет напоминать карту шоссейных дорог США: галактики будут располагаться вдоль линий, пересекающих межгалактическое пространство, наподобие скоростных автострад, между которыми раскинулись области относительно низкой плотности— космическая окраина. А на перекрестках, где сходятся многочисленные «магистрали», образовались скопления галактик — космические мегаполисы, размеры которых ошеломляют. Чтобы преодолеть расстояние от Луны до Земли, лучу света потребуется чуть более секунды, от Солн­ца до нашей планеты — восемь минут, а от центра нашей галактики — 25 тыс. лет. Но и это пустяк по сравнению с тем временем, которое необходимо свету, чтобы пересечь типичное скопление галактик — около 10 млн. лет. Оказывается, скопления галактик — крупнейшие гравитационно связанные объекты во Вселенной. Цепочки галактик между ними могут быть еще большими по размеру, но они не являются едиными и связанными гравитацией. Галактики и прочее вещество внутри гравитационно связанного скопления находятся в динамическом равновесии: они движутся внутри скопления, ноне покидают его пределов, поскольку их удерживает притяжение темной материи. Эта загадочная форма материи проявляет себя только через гравитацию. Взаимодействие компонентов скопления приводит к целому ряду явлений, в которых астрономы только начинают разбираться. Крупнейшие объекты во Вселенной — скопления галактик. Каждое из них включает в себя примерно 1000 галактик, движущихся как рой пчел в облаке горячего газа (красный) и удерживаемых от разлета взаимным притяжением. В ядре скопления находится особо крупная галактика, где происходят наиболее бурные процессы в современной Вселенной Как и крупные города на Земле, скопления — нечто большее, чем просто сумма их обитателей. Процессы, происходящие в них, отражаются в более мелких масштабах, влияя на рост галактик и питание сверхмассивных черных дыр в их центрах. В свою очередь, черные дыры, с большой скоростью выбрасывающие огромное количество вещества, могут влиять на эволюцию всего скопления. На первый взгляд это кажется загадочным. Черные дыры в диаметре меньше Солнечной системы, а по сравнению со скоплением галактик они все равно что горошины в сравнении с Землей. И, тем не менее, они влияют на все скопление...


Начиная в середине XIX в. разработку теории электромагнетизма, Джеймс Клерк Максвелл располагал большими количествами информации об электрическом и магнитном полях. В частности, удивительным был тот факт, что электрические и магнитные силы убывают с расстоянием в точности так же, как и сила тяжести. И гравитационные, и электромагнитные силы - это силы большого радиуса действия. Их можно ощутить на очень большом удалении от их источников. Напротив, силы, связывающие воедино ядра атомов, - силы сильного и слабого взаимодействий - имеют короткий радиус действия. Ядерные силы дают о себе знать лишь в очень малой области, окружающей ядерные частицы. Большой радиус действия электромагнитных сил означает, что, находясь далеко от черной дыры, можно предпринять эксперименты для выяснения, заряжена эта дыра или нет. Если у черной дыры имеется электрический заряд (положительный или отрицательный) или магнитный заряд (соответствующий северному или юному магнитному полюсу), то находящийся вдалеке наблюдатель способен при помощи чувствительных приборов обнаружить существование этих зарядов.В конце 1960-х - начале 1970-х годов астрофизики-теоретики упорно трудились над проблемой: информация о каких свойствах черных дыр сохраняется, а о каких - теряется в них?Характеристики черной дыры, которые могут быть измерены удаленным наблюдателем, - это ее масса, ее заряд и ее момент количества движения. Эти три основные характеристики сохраняются при образовании черной дыры и определяют геометрию пространства-времени вблизи нее. Иными словами, если задать массу, заряд и момент количества движения черной дыры, то о ней уже будет известно все - у черных дыр нет иных свойств, кроме массы, заряда и момента количества движения. Таким образом, черные дыры - это очень простые объекты; они гораздо проще, чем звезды, из которых черные дыры возникают. Г. Райснер и Г. Нордстрём открыли решение эйнштейновских уравнений гравитационного поля, полностью описывающее "заряженную" черную дыру. У такой черной дыры может быть электрический заряд (положительный или отрицательный) и/или магнитный заряд (соответствующий северному или южному магнитному полюсу). Если электрически заряженные тела - дело обычное, то магнитно заряженные - вовсе нет. Тела, у которых есть магнитное поле (например, обычный магнит, стрелка компаса, Земля), обладают обязательно и северным, и южными полюсами сразу. До самого последнего времени большинство физиков считали,что магнитные полюсы всегда встречаются только парами. Однако в 1975 г. группа ученых из Беркли и Хьюстона объявила, что в ходе одного из экспериментов ими открыт магнитный монополь. Если эти результаты подтвердятся, то окажется, что могут существовать и отдельные магнитные заряды, т.е. что северный магнитный полюс может существовать отдельно от южного, и обратно. Решение Райснера-Нордстрёма допускает возможность существования у черной дыры магнитного поля монополя. Независимо от того, как черная дыра приобрела свой заряд, все свойства этого заряда в решении Райснера-Нордстрёма объединяются в одну характеристику - число Q. Эта особенность аналогична тому факту, что решение Шварцшильда не зависит от того, каким образом черная дыра приобрела свою массу. При этом геометрия пространства-времени в решении Райснера-Нордстрёма не зависит от природы заряда. Он может быть положительным, отрицательным, соответствовать северному магнитному полюсу или южному - важно лишь его полное значение, которое можно записать как |Q|. Итак, свойства черной дыры Райснера-Нордстрёма зависят лишь от двух параметров - полной массы дыры М и ее полного заряда|Q| (иными словами, от его абсолютной величины). Размышляя о реальных черных дырах, которые могли бы реально существовать в нашей Вселённой, физики пришли к заключению, что решение Райснера-Нордстрёма оказывается не очень существенным, ибо электромагнитные силы намного больше сил тяготения. Например, электрическое поле электрона или протона в триллионы триллионов раз сильнее их гравитационного поля. Это значит, что если у черной дыры был бы достаточно большой заряд, то огромные силы электромагнитного происхождения быстро разбросали бы во все стороны газ и атомы, "плавающие" в космосе. В самое короткое время частицы, имеющие такой же знак заряда, как и черная дыра, испытали бы мощное отталкивание, а частицы с противоположным знаком заряда - столь же мощное притяжение к ней. Притягивая частицы с зарядом противоположного знака, черная дыра вскоре стала бы электрически нейтральной. Поэтому можно полагать, что реальные черные дыры обладают зарядом лишь малой величины. Для реальных черных дыр значение |Q| должно быть гораздо меньше, чем М. В самом деле, из расчетов следует, что черные дыры, которые могли бы реально существовать в космосе, должны иметь массу М по крайней мере в миллиард миллиардов раз большую, чем величина |Q|.


Ньютон открыл Закон Всемирного Тяготения и заставил астрономов задуматься над тем, что некоторые звезды могут сжиматься и становиться темными, потому что их гравитация могла быть такой сильной, что ничто, даже свет, не мог бы покинуть пределов такой звезды. Эти темные звезды были названы черными дырами и за последние тридцать лет астрономы накопили впечатляющее количество данных для доказательства существования двух типов черных дыр.

Масса черных дыр показывает, что они являются сжатыми остатками звезд, по крайней мере, в 20 раз больших, чем Солнце. Явные кандидаты в черные дыры обнаружены пока лишь на орбите вокруг нормальной звезды. По мере того, как вещество из нормальной звезды падает к черной дыре, оно выдает заметное рентгеновское излучение до того, как исчезнет в черной дыре, чтобы никогда уже не возвратиться оттуда. Число этих страшных гравитационных малюток в нашем Млечном Пути оценивается в несколько десятков или сотен миллионов.

Радио, инфракрасные, оптические и рентгеновские лучи показывают, что значительно большие черные дыры, называющиеся супермассивными, существуют в центре большинства галактик. Эти черные дыры имеют массу, колеблющиеся от нескольких миллионов до нескольких миллиардов масс Солнца. Супермассивная черная дыра в центре Млечного Пути имеет массу только около 3 миллионов солнечных масс.

Как супермассивные черные дыры формируются, пока не понятно. Предполагают, что они могли сформироваться через прямой коллапс облака вещества в центре галактики, или через слияние черных дыр, или постепенным приростом окружающего газа из галактики, или комбинацией всего перечисленного выше. Их прирост мог бы зависеть от доступности окружающего газа, или от соседних черных дыр, которые могли бы захватываться при вращении галактики.

Один важный аспект, который был обнаружен несколько лет назад, состоит в том, что масса центральной супермассивной черной дыры галактики приблизительно соотносится с массой центральной части галактики. Например, Млечный Путь, в котором центр Галактики имеет сравнительно небольшое ядро, имеет и меньшую супермассивную черную дыру, чем в других галактиках. Любая успешная теория образования супермассивных черных дыр должна принять во внимание отношение дыра/ядро галактики.

Результаты с «Чандра» и других рентгеновских телескопов, и Телескопа Хаббл позволили рассмотреть возможность, которая все предполагает существование другого типа черной дыры. Эти черные дыры, чьи массы могли быть в районе несколько сот (до тысячи) солнечных масс, названы промежуточными черными дырами. Они могли быть остатками чрезвычайно огромных звезд, сформированных в начале эволюции Вселенной. Или они формировались бы через быстрое слияние многих меньших черных дыр в центрах плотных звездных групп (шаровых скоплений). Они могут быть необыкновенно мощными звездными черными дырами. Подтверждения этому нет, но все указывает на это.



На 20-ом симпозиуме Техаса в янкаре 2001 года по релятивистской астрофизике астрономы из университета Остина Karl Gebhardt и John Kormendy продемонстрировали, что два метода, использующиеся для измерений масс близлежащих черных дыр, могут использоваться также и для вычисления размеров наиболее удаленных квазаров. Использование этих методов может дать астрономам возможность получения большей информации о росте черных дыр и формировании галактик.

В настоящее время астрономам известны 38 черных дыр. 13 из них обнаружил Gebhardt и шесть - Kormendy. Масса сверхмассивной черной дыры превышает массу Солнца от одного миллиона до одного миллиарда раз. Такие черные дыры располагаются в центрах галактик. Поскольку они невидимы, их поиск и изучение основаны на наблюдениях перемещений звезд, вращающихся вокруг них. Считается, что квазары, чрезвычайно удаленные астрономические объекты, содержат в центре сверхмассивные черные дыры, которые активно поглащают окружающие их звезды и газ.

Проведенные до сих пор прямые измерения сверхмассивных черных дыр в 38 галактиках были основаны на наблюдениях за вращением и скоростями звезд и газа около центров этих галактик. Такие измерения требуют высокого пространственного разрешения, такого, какое способен обеспечить пока только космический телескоп Hubble.

Но этот тип измерений дает хорошие результаты только для близлежащих галактик. Квазары слишком далеки, чтобы применять к ним эти прямые методы. Поэтому астрономы вынуждены полагаться на физические модели областей, лежащих вблизи черных дыр, чтобы измерить их массы. Недостатком этого метода является то, что существует много неопределенностей в физике квазаров. Сейчас разработаны два метода для измерения масс черных дыр, располагающихся в квазарах. Оба они включают неопределенность.

Первый из методов основан на изменчивости квазаров и на том факте, что вокруг каждой сверхмассивной черной дыры обращаются огромные газовые облака. По мере того как изменяется энергия, излучаемая черной дырой, изменяется и яркость излучения вращающихся вокруг нее газовых облаков. Поскольку свет перемещается с конечной скоростью, изменения яркости газовых облаков видны позже, чем изменения яркости центрального источника излучения. Разница во времени позволяет вычислить, как далеко от черной дыры располагаются облака газа. Скорость, с которой облака обращаются вокруг черной дыры, также может быть измерена. Взятые вместе эти измерения позволяют получить массу черной дыры. Однако не существует способа проверить эти данные, и некоторые из свойств газовых облаков, принимаемые в данной модели, вызывают сомнения.

Вторая модель вызывает еще большие сомнения. До сих пор большинство специалистов не доверяет данным, полученным на основе таких методов вычисления масс черных дыр. Тем не менее астрономы из университета Остина показали, что данные, получаемые этими методами, соответствуют обнаруженной недавно зависимости между массами черных дыр и массами галактик.



Каковы же теоретические оправдания процесса сгущения разреженного межзвездного вещества в звезды под действием гравитации?

Оказывается, И. Ньютон достаточно полно сформулировал их задолго до появления первых наблюдательных указаний на гравитационную неустойчивость межзвездной среды. Через 5 лет после того, как И. Ньютон опубликовал свой закон тяготения, его друг, преподобный Ричард Бентли, стоявший тогда во главе Тринити-колледжа в Кембридже, в письме к Ньютону спрашивал о том, не может ли быть описанная им сила тяготения причиной образования звезд (как нам кажется, столь точная формулировка проблемы делает Р. Бентли соавтором высказанного Ньютоном принципа гравитационной неустойчивости).

В письме к Бентли от 10 декабря 1692 г. Ньюток отвечал: "Мне кажется, что если бы все вещество нашего Солнца и планет и все вещество Вселенной было бы равномерно рассеяно в небесных глубинах, и если бы каждая частица имела врожденное тяготение ко всем остальным, и если бы, наконец, пространство, в котором была бы рассеяна эта материя, было бы конечным, вещество снаружи этого пространства благодаря указанному тяготению, влеклось бы ко всему веществу внутри и вследствие этого упало бы в середину всего пространства и образовало бы там одну огромную сферическую массу. Однако, если бы это вещество было равномерно распределено по бесконечному пространству, оно никогда не могло бы объединиться в одну массу, но часть его сгущалась бы тут, а другая там, образуя бесконечное число огромных масс, разбросанных на огромных расстояниях друг от друга по всему этому бесконечному пространству. Именно так могли образоваться и Солнце и неподвижные звезды, если предположить, что вещество было светящимся по своей природе".

Таким образом, великий физик впервые сформулировал принцип гравитационной неустойчивости однородного вещества и, по существу, создал первую научную концепцию происхождения планет и звезд. Еще раз отметим стимулирующую роль вопроса, заданного Р. Бентли. В связи с этим можно вспомнить, хотя бы в качестве исторического курьеза, что через 17 лет после обмена письмами между Ньютоном и Бентли другой "служитель культа", епископ Джордж Беркли, использовал авторитет и высказывания Ньютона для обоснования своих сугубо идеалистических взглядов на мир. "Моя доктрина, - писал он, - прекрасно соответствует идее творения: я считаю, что ни материя, ни звезды, ни Солнце и т. д. не существовали прежде". После Ньютона такие взгляды воспринимались уже вполне естественно.

Создав паровой двигатель и теоретическую термодинамику, ученые XIX в. поняли, что поведение разреженного вещества зависит не только от силы тяжести, но и от запасенной в нем тепловой энергии. Точное решение задачи о гравитационной неустойчивости получил в 1902 г. английский теоретик Джеймс Джине. Изучая распространение звуковых волн в газе с учетом сил гравитации, он показал, что существует критическое (теперь мы говорим - джинсовское) значение длины звуковой волны (hJ), разделяющее сферы влияния гравитации и газового давления.

Если создать в газе уплотнение с характерным размером h < hJ, то сила гравитации поборет давление газа, и уплотнение уже не сможет расшириться, а будет продолжать сжиматься под действием собственной тяжести.

Чтобы понять, почему поведением коротковолновых возмущений плотности управляет сила газового давления, а длинноволновых - гравитация, рассмотрим их влияние на вещество как бы по отдельности. Если бы отсутствовало газовое давление, то под действием гравитации все вещество облака собралось бы к его центру за время свободного падения (tпад), которое зависит только от средней пространственной плотности газа, а значит, оно имеет одинаковое значение для возмущений плотности с любым характерным размером.

С другой стороны, в случае отсутствия гравитации сила газового давления заставила бы облако расшириться. В свободном состоянии газ расширяется со скоростью, близкой к скорости звука, т. е. близкой к средней скорости теплового движения молекул. Значит, характерное время расширения некоторого газового объема (tрас) можно оценить, разделив его размер на скорость звука в газе. Поскольку же скорость звука зависит только от температуры и химического состава газа, время расширения прямо пропорционально размеру облака.

Следовательно, в возмущениях плотности маленького размера (tпад > tрас) газовое давление всегда будет успевать перераспределить вещество таким образом,. чтобы воспрепятствовать дальнейшему сжатию. И напротив, возмущения плотности большого размера (tпад рас), случайно возникнув, уже не смогут вновь расшириться: у них на это просто не хватит времени, так как гравитация сработает быстрее, чем сила газового давления. Этот процесс и называется гравитационной (или джинсовской) неустойчивостью.

Проделанные выше рассуждения можно перевести с языка характерных времен на язык сил, который дает возможность более точно определить значения критической длины волны (hJ) и массы (MJ) гравитационно неустойчивого возмущения плотности. Это было сделано Дж. Джинсом в начале нынешнего века, исследовавшим процесс гравитационной неустойчивости с помощью точных уравнений распространения звуковых волн в газе. Но в, этих уравнениях, кроме силы газового давления, впервые фигурировала и сила собственной гравитации газа. До Джинса эту "малую поправку" никто не принимал во внимание. Действительно, в лабораторных условиях она ничтожна, но в масштабах галактики эта сила вполне реальна, и на равных правах с давлением частиц и магнитного поля она управляет движением огромных масс межзвездного газа.

Спустя 240 лет после письма Ньютона к Бентли Джине написал в своей книге "Звезды в их развитии" (в русском переводе "Движение миров". - М., 1933): "Предположим, что в начале времен все пространство было заполнено газом… Тогда можно доказать, что газ не оставался бы равномерно распределенным в пространстве, а немедленно стал бы собираться в шары. Мы можем вычислить, сколько газа потребуется для образования каждого шара".

Действительно, в отличие от Ньютона Джине мог это вычислить. Таким образом, от гипотезы Ньютона до теории Джинса потребовалось построение всей классической физики, занявшее два с половиной века. Принимая во внимание только давление газа и гравитацию" Джине получил простые формулы для вычисления критических параметров гравитационно неустойчивых возмущений плотности. Как показывают эти формулы, и минимальный размер (hJ), и минимальная масса (МJ) таких возмущений увеличиваются с ростом температуры газа и уменьшаются с ростом его плотности.

Формулы эти были получены еще в начале века, когда не имелось почти никакой информации о состоянии межзвездной среды, прежде всего о многообразии физических условий и процессов в ней. Вероятно, поэтому сам Джине довольно легкомысленно заметил: "…для нас ясно, почему все звезды имеют очень сходный вес; это потому, что все они образованы одинаковым процессом. Они, пожалуй, похожи на фабричные изделия, сделанные одной и той же машиной". Как выясняется теперь, звезды в действительности очень разнообразны: диапазон их масс охватывает не менее трех порядков величины, есть заметные различия и в их химическом составе, в напряженности магнитного поля, в скорости вращения.

И все же именно теперь мы в полной мере ощутили силу формул Джинса. Если взять в качестве типичных мест формирования звезд мелкомасштабные конденсации в молекулярных облаках, где температура Т=(5-20) К и концентрация частиц п=(104 - 106) см-3 и использовать эти значения для вычисления МJ по Джинсу, мы получим МJ=(0,03-3) Mс. Прекрасный результат, если вспомнить, что в этой простой формуле удалось "миновать" такие важные физические факторы, как упругость межзвездного магнитного поля, внешнее газовое давление, гравитация уже имеющихся в газе и вокруг него звезд, вращение газового облака и т. д.



Черные дыры - это области пространства, настолько плотные, что даже свет не может преодолеть их гравитационного притяжения. Так как черная дыра проглощает газ, пыль и даже звезды, поглащаемое вещество становится настолько горячим, что начинает излучать с очень высокой энергией по мере того, как погружается в черную дыру. Эта энергия включает и рентгеновское излучение, которое способны обнаруживать телескопы на околоземной орбите.

Астрономы обнаружили относительно малую черную дыру в центре галактики NGC 4395 в созвездии Гончих Псов, которая излучает в рентгене так же интенсивно, как черные дыры обычных размеров.

NGC 4395 - первая галактика, в центре которой найдена маленькая, но очень эффективная сверхмассивная черная дыра.

В статье, которая была опубликована в Monthly Notices Королевского Астрономического Общества, астрономы из института астрономии Кембриджского университета пишут о том, что они обнаружили "крошечную" супермассивную черную дыру, которая, вопреки математическим ожиданиям, является столь же мощной, как большие черные дыры в центрах других галактик.

Черная дыра, расположенная в галактике NGC 4395, массивнее нашего Солнца в 50000 раз. Обычные известные нам сверхмассивные черные дыры, как правило, в миллионы и миллиарды раз массивнее Солнца. Согласно астрономам, эта черная дыра "работает" так же, как обычная сверхмассивная черная дыра, несмотря на ее малые размеры.

Наличие таких небольших по размерам черных дыр может объяснить свойства сейфертовских галактик - одного из типов активных галактик, в центре которых, как считается, содержатся черные дыры. Такие галактики менее ярки, чем квазары и другие активные галактики, но испускают большое количество рентгеновского излучения.

Астрономы пока не знают, сколько существует подобных черных дыр. NGC 4395 - единственая известная галактика с такой черной дырой



Современные суперкомпьютеры имитируют мощные энергетические джеты (струи), выходящие из чёрных дыр - самых экзотических и мощных объектов во Вселенной.

"Эти исследования помогут нам открыть загадку чёрных дыр и подтвердить, что вследствие их вращения действительно происходит выход энергии," - говорит астрофизик Дэвид Мейер (David Meier), один из соавторов статьи, которая скоро выйдет в международном научном журнале Science.

Чёрные дыры - это сверхплотные объекты с такой сильной гравитацией, что даже свет не может из них выйти. Чёрные дыры захватывают в себя звёзды и любое другое, приблизившееся к ним, вещество, включая другие чёрные дыры. Эти необычные объекты образуются одним из двух способов - при коллапсе звезды или когда много звёзд и чёрных дыр коллапсируют вместе в ядре галактики.

Оба типа чёрных дыр могут вращаться очень быстро, увлекая за собой пространство вокруг них. Когда много вещества падает на чёрную дыру, оно закручивается как в водовороте. С помощью рентгеновских и радио-наблюдений астрономы могут быть свидетелями таких событий, в том числе и струй из чёрных дыр, но они не могут увидеть саму чёрную дыру.

"Мы не можем совершить путешествие к чёрной дыре, и мы не можем сделать её в лаборатории - поэтому мы используем суперкомпьютеры," - продолжает Мейер. С помощью компьютеров учёные объединяют данные о плазме, падающей на чёрную дыру, и свои познания того, как гравитация и магнитные поля могут воздействовать на плазму. Учёные также исследуют способы того, как магнитное поле может использовать энергию вращения чёрной дыры и образовывать мощные струи.

Феномен струй был предсказан Роджером Блэндфордом и Романом Знажеком в 1970-х годах. Новые компьютерные исследования подтверждают это предсказание. Последние работы были проведены в конце 2001-го года с помощью суперкомпьютера японского института National Institute for Fusion Science.

Объекты со струями в ядрах галатик были идентифицированы в начале 1900-х годов. В 1960-х годах учёные исследовали возможность того, что этими объекты со струями могут быть сверхмассивные чёрные дыры с массами от одного миллиона до нескольких миллиардов масс Солнца.

В 1990-х годах было установлено, что такие струи могут испукаться менее массивными чёрными дырами в двойных звёздных системах. Чёрная дыра с массой в десять масс Солнца может образоваться при коллапсе звезды массой от 20 до 30 масс Солнца. При этом образуется крошечный невидимый объект размером всего лишь в несколько километров, но с очень мощным гравитационным полем. Сверхмассивные чёрные дыры образуются при коллапсе большого количества звёзд и чёрных дыр в ядрах галактик.



Астрономы пришли к заключению, что черные дыры не рождаются огромными, а постепенно растут за счет газа и звезд галактик.

Тщательно проведенные с помощью спектрографа космического телескопа NASA Hubble исследования более чем 30 галактик с центральными черными дырами позволили проследить подробную эволюцию галактик и их взаимоотношений с находящимися в их центрах гигантскими черными дырами.

Анализ этих данных показывает, что гигантские черные дыры не предшествовали рождению галактик, а эволюционировали вместе с ними, поглощая определенный процент массы звезд и газа центральной области галактики. Это означает, что в меньших галактиках черные дыры менее массивны, их массы составляют не многим более нескольких миллионов солнечных масс. Черные дыры в центрах гигантских галактик, включающие в себя миллиарды солнечных масс, поглащали настолько много газа, что начали сиять как квазары, самые яркие объекты во Вселенной.

Суть заключается в том, что окончательная масса черной дыры не является ее изначальной массой, она определяется в процессе формирования галактики. "События, которые создают галактику, и события, заставляющие ее центральную черную дыру сиять как квазар, одни и те же," - говорит John Kormendy из университета Техаса в Остине. "Эти результаты помогают связать несколько направлений исследования формирования галактик в одну наиболее правдоподобную и последовательную картину".

Обнаружение телескопом Hubble еще 10 сверхмассивных черных дыр в центрах галактик увеличивает число черных дыр, доступных для исследований, до 30.

Полученные результаты обнаруживают тесную взаимосвязь между массой черной дыры и звездами, составляющими эллиптическую галактику, или центральным звездным балджем спиральной галактики.

Эти исследования также объясняют, почему в центрах галактик с малыми звездными балджами, таких, как наша галактика Млечный Путь, находятся "крошечные" черные дыры массой всего в несколько миллионов масс Солнца, в то время как в центрах гигантских эллиптических галактик располагаются сверхмассивные черные дыры с массами, составляющими миллиарды солнечных масс. В центре галактики, не имеющей центрального звездного балджа (типа ближайшей к нам галактики М33), либо нет черной дыры, либо есть очень небольшая черная дыра, обнаружение которой - ниже предела возможностей телескопа Hubble.

В большинстве случаев черные дыры увеличиваются не только за счет поглощения газа отдельной галактики, но и путем слияния галактик, в результате чего их черные дыры объединяются.

Результаты проведенного исследования не позволили ответить на вопрос, как зарождается черная дыра. Ясно только, что она должна быть в галактике на раннем этапе процесса формирования этой галактики. Также не известно, как процесс формирования галактики создает черную дыру с такой точно коррелированной массой.

Hubble обладает уникальной способностью точно измерять скорость газа и звезд вблизи черной дыры. Результаты исследований, основанные на двух типах наблюдений с помощью Hubble, докладывались на встрече Американского Астрономического Общества. Несколько исследовательских групп измерили массы черных дыр, другие группы занимались исследованием движения звезд вблизи центра галактик.



© 2012 Мир народной медицины | Все права защищены.Копирование материалов запрещено
Яндекс.Метрика