Главная Обратная связь Добавить в закладки Сделать стартовой

Энтони Розель (Antoni Rosell) из каталонского исследовательского института (Institució Catalana de Recerca i Estudis Avançats)и Геральд Хауг (Gerald Haug) из потсдамского института исследований воздействий на климат (Potsdam Institut für Klimafolgenforschung) решили загадку, ответ на которую далеко не так очевиден, как может показаться на первый взгляд — почему на северном полюсе миллионолетние льды?

Внезапное падение среднемировой температуры 2,7 миллиона лет назад заморозило Европу, Северную Америку и океан вблизи полюса.

Причина появления льдов кажется очевидной, но, по всем старым расчётам, того резкого снижения температуры было явно недостаточно для того, чтобы образовавшиеся льды из года в год наращивали свою массу, и для того, чтобы они сохранились в таком виде до наших дней.

Исследователи проанализировали особенности климата прошлого, используя данные об отложениях останков морских организмов и новейшие компьютерные модели атмосферы и океана.

Оказалось, что ключевую роль в формировании льдов на севере сыграло не столько, собственно, снижение глобальной температуры, сколько резкий рост (на целых 7 градусов Цельсия) разницы между температурами летними и зимними.

В течение всего нескольких столетий летние температуры заметно выросли. Потому вода в океанах интенсивнее испарялась. А температуры зимой, соответственно, были намного ниже чем раньше — испарившаяся летом вода выпадала в виде интенсивного снега, способствуя росту толщины льда на полюсе.

Также важным было и то, что летом вода в северной части Тихого океана плохо перемешивалась. Разные по солёности слои тогда, миллионы лет назад, словно жили совершенно отдельно друг от друга — поверхностные воды никогда не уходили вглубь, нагревались на солнце всё сильнее и сильнее обычного, что ещё больше увеличивало испарение и, соответственно, влажность атмосферы северного полушария.

Эта работа поможет понять — как нынешние перемены в океане отразятся на климате в будущем.



В ожидании катастрофы

В прошлом столетии природа уже дважды демонстрировала свои могучие мускулы, доказывая, что она гораздо сильнее самого крепкого бетона и стали. Так было в 1906 и 1989 годах.

Но эти два землетрясения, повергшие Сан-Франциско в хаос, являются всего лишь предвестниками будущей катастрофы, которая может буквально в ближайшее время сравнять с землей этот прекрасный город. Это не предсказание Нострадамуса. Дело в том, что само расположение Сан-Франциско говорит о том, что в один прекрасный день он будет разрушен, сожжен и исчезнет в огромных проломах земной коры, сохранившись только в людской памяти, на фотографиях и открытках.

Причина неизбежной гибели города скрывается в гигантском геологическом разломе, который образовался еще в период формирования самой нашей планеты. Разлом, названный в честь святого Андреаса, представляет собой 650-мильную трещину в земле, где тихоокеанское плато постепенно заходит под сушу в районе штата Калифорния.

Первая репетиция

18 апреля 1906 года произошло первое сильное землетрясение, опустошившее Сан-Франциско. Почувствовав первые удары стихии, жители города «золотой лихорадки», который к тому времени превратился в один из самых процветающих городов Западного побережья, встревожились. Толчки следовали один за другим, и было очень странно ощущать, как дрожит под ногами земля, или смотреть, как перед глазами подпрыгивает стол.

В этот трагический день, когда слуги разбудили газетного магната Уильяма Рэндольфа Херста, отдыхавшего в своих роскошных нью-йоркских апартаментах, и сказали, что его родной Сан-Франциско разрушен подземными толчками и пожарами, он, открыв глаза, ответил: «Не переигрывайте - в Калифорнии часто происходят землетрясения».

Но землетрясение в Сан-Франциско намного превосходило все допустимые предположения. Это был один из самых больших катаклизмов века. Сила подземных толчков составила 8,3 балла по шкале Рихтера. По своей мощности землетрясение превосходило силу тридцати ядерных бомб, одновременно взорванных над землей. Под разрушенными зданиями в пожарах в первые же минуты после подземных толчков погибли восемьсот человек.

Мери Монти, которой в 1996 году исполнилось девяносто четыре года, так вспоминала о том трагическом дне: «Меня выбросило из кровати. Стены дома, в котором мы жили, начали дрожать и покрываться трещинами. Мы выбежали на улицу - дорога покрылась буграми, они двигались, вспучиваясь, словно в кипящем котле. Моя мама собрала всех детей, и мы поехали на повозке в горы. Повсюду полыхали пожары. Внезапно возник новый пожар - это лопнул бензопровод, и бензин начал выливаться на улицу».

Землетрясение разрушило водопровод, и пожарные не смогли как следует взяться за дело. Поэтому в районе Телеграф Хилл, где проживали самые богатые в городе семьи итальянских иммигрантов, пожар пытались тушить при помощи десятков тысяч литров вина.

Паникой, охватившей город, воспользовались мародеры. Банды грабителей носились по улицам, опустошая разрушенные магазины и очищая карманы мертвецов, лежавших вдоль водосточных канав. Захваченных на месте преступления бандитов разъяренные жители вешали без суда и следствия на уцелевших фонарных столбах.

Писатель Джек Лондон, делавший репортажи для еженедельного журнала, сообщал: «Сан-Франциско умер! В среду в 5.15 утра произошло землетрясение. Через минуту в небо взметнулись языки пламени. Никто не гасил огонь, люди были не организованы, отсутствовала связь... Словом, все хитроумные системы защиты человека были уничтожены тридцатисекундным движением земной коры».

Когда вспыхнули пожары, более 75% города уже было разрушено, четыреста городских кварталов лежали в руинах. Трагедия вынудила правительство США вложить деньги в изучение разлома земной коры и в разработку мер, которые позволят предсказать следующее стихийное бедствие.

Изучение феномена

Хотя ученые и понимают, что бедствие напрямую связано с разломом Святого Андреаса и что земля с западной стороны линии разлома сдвинулась к северу, они пока еще очень мало знают о процессах, которые двигают и сотрясают сушу.

Гарри Филдинг Рейд, геолог из Пенсильвании, наблюдая колебания заборных столбов и дорожные разрушения, обнаружил, что сдвиг почвы составил примерно 21 фут (около 6 метров). Но что было наиболее важным в его наблюдениях, так это то, что он установил: огромные блоки суши по обе стороны разлома находились в состоянии громадного напряжения задолго до катастрофы. Титанические силы заставили соприкоснуться две стороны разлома, а затем, накопив колоссальную энергию, подвинули сушу.

В 1970 году ученым удалось определить, что секции грунта вдоль разлома двигались с различной скоростью, вызывая в некоторых районах большее напряжение, чем в других. Разлом соприкоснулся в районах от Арен-Пойнта до Сан-Хуан Батиста, маленького городка к югу от Сан-Франциско и от Паркфилда вниз до мексиканской границы.

Когда колоссальная энергия накопится и сдвинет разлом, произойдет следующее землетрясение.

Эксперт Дэвид Лэнгстон сказал буквально следующее: «Все, что мы можем сделать, - это продолжить наши усилия по изучению процессов, чтобы дать достоверную информацию населению, когда двинется в путь огромная масса земли».

Опираясь на фундаментальные исследования, федеральное агентство по чрезвычайным ситуациям в 1980 году разработало сценарий, согласно которому землетрясению в первую очередь могут подвергнуться Сан-Франциско и Лос-Анджелес. По этим мрачным прогнозам предполагается гибель до 50000 человек.

В 1989 году телевидение смоделировало вариант землетрясения, показав жителям картину разрушений, которые могут обрушиться однажды на город в гораздо больших масштабах.

Последнее предупреждение

17 октября 1989 года в вечерний «час пик» стихия нанесла по городу новый удар, превратив за 15 секунд в развалины многие здания, ввергла в пожарище исторический район Марина, уничтожила секцию моста Бэй Бридж, разворотила целую милю шоссе-эстакады, под обломками которой погибло более ста человек. Десятки людей были погребены в своих автомашинах под многотонной тяжестью обрушившегося бетона.

«Бетон расплющил их, - сказал руководитель чрезвычайной службы Окленда. - Это было похоже на поле боя. Жертвы, оказавшиеся в ловушке под тоннами камней, отчаянно сигналили, и мы бросили туда огромное количество подъемного оборудования и кранов, надеясь спасти их. Слабеющие звуки автомобильных сирен постепенно умирали, так как разряжались аккумуляторы, но мы знали, что там находятся люди. Это была страшная картина».

Ночью развалины освещались огнями пожаров, из раскачивающихся небоскребов, построенных без учета эффекта землетрясения, сыпались стекла и раздавались жуткие звуки сирен.

Через некоторое время разрушения, которые коснулись главным образом старых построек, были локализованы. Разрушенной секции шоссе, например, повлекшей самые многочисленные жертвы, было более тридцати лет.

Эксперты сошлись во мнении, что разрушения в Сан-Франциско были бы еще большими, если бы не калифорнийский строительный кодекс, введенный после 1906 года с целью свести к минимуму ущерб от будущих катастроф и дополненный уроками землетрясений 1971 года в Сан-Фернандо и 1985 года в Мехико, вынудивший строителей обратить особое внимание на антисейсмическую устойчивость домов и сооружений.

Жители Сан-Франциско предпочитают не думать о том, что новое землетрясение может достигнуть 8,3 балла по шкале Рихтера, как это было в 1906 году. Никого не занимает и исследование, проведенное Национальной океанической и атмосферной комиссией после катастрофы 1989 года, в котором утверждается, что будущее землетрясение будет в сорок раз мощнее и приведет к десяткам тысяч смертей.

Несмотря на то, что после последнего землетрясения прошло уже достаточно много времени, в Сан-Франциско все еще ликвидируются его последствия. Но жители города горды тем, что пережили бедствие, и щеголяют своим фаталистическим отношением к будущей возможной агрессии природы. Репортер «Сан-Франциско кроникл» Херб Коэн так суммировал мнение горожан после землетрясения: «Мы живем на разломе, мы живем под домокловым мечом. И это захватывает».



Уединение звезд, их обособленность друг от друга нельзя назвать правилом. Многие из них образуют пары и называются двойными звездами. Они обращаются около их общего центра тяжестей под действием взаимного тяготения. Бывает, правда, что иногда две звезды в телескоп случайно видны близко друг к другу, тогда как в действительности в пространстве они совершенно не связаны между собой. Это так называемые оптические двойные звезды. В большинстве же случаев мы имеем дело с физически двойными звездами, т. е. тяготеющими друг к другу.

Обращение их около общего центра тяжести обнаружил впервые Гершель в Англии и подтвердил В. Я. Струве в России. Измеряя взаимное положение двойных звезд из года в год, можно определить период их обращения, который в большинстве случаев весьма велик и превышает тысячи лет. Самый короткий из них составляет около года.

Из таких измерений выясняется и форма их орбит, но истинный размер орбит становится известен только в том случае, когда известно расстояние. В самом деле, наблюдения дают лишь угол, под которым видна большая полуось орбит звезд. Изучение взаимного движения двойных звезд необычайно ценно для нас прежде всего в двух отношениях. Во-первых, оно показывает, что закон всемирного тяготения справедлив и в мире звезд, далеко за пределами солнечной системы.

Во-вторых, оно предоставляет нам единственную возможность определять массы звезд. Оказалось, что в противоположность светимостям и размерам массы звезд сравнительно мало отличаются друг от друга. Массы гигантов больше, чем массы карликов, но в общем все они заключены в пределах от 40 до 1/4 массы Солнца. Только отдельные редкие звезды имеют массы, доходящие до сотни масс Солнца. Это однообразие в массах звезд наряду с разнообразием размеров их приводит к заключению, что плотности звезд должны быть крайне различны. Между массой и светимостью звезд есть четкая зависимость (правда, ей подчиняются не все звезды) и она показывает, что большую силу света способны иметь лишь массивные звезды, так что масса звезд определяет соотношение между их температурой и размерами.Среди двойных звезд мы встречаем такие пары, которые напоминают двух близнецов, настолько составляющие их звезды похожи во всем друг на друга. Представьте себе, что мы - жители планеты, которая, может быть, обращается вокруг одной из таких звезд. Какие изумительные картины разворачиваются там на небе! Из-за горизонта встает, например, красный громадный круг солнца, в сотни раз большего видимого поперечника, чем наше. За ним встает маленькое голубоватое солнце и постепенно исчезает за массивной спиной своего патрона, чтобы потом снова из-за нее вынырнуть.

Или же там настает день, залитый красным светом, как у нас на закате Солнца, а вместо ночи затем наступает голубой день. Может быть, иногда голубое солнце проходит перед красным и сияет, как голубой бенгальский огонь на красном фоне.

А что можно увидеть в системе существующих тройных и даже четверных звезд, где одна из звезд или обе являются сами системами двойных солнц, разного размера и цвета! Какие причудливые комбинации солнц и какая игра красок там должны быть, как сложно там меняются ночи и дни с разным числом солнц на небе, дни, длящиеся иногда годами и, может быть, даже никогда не переходящие в ночь!

Очень тесные пары звезд не раскрывают нам своей природы даже в телескоп. В него такая пара выглядит как одна звезда, но тут на помощь нам приходит спектральный анализ.

В "ручке ковша" Большой Медведицы вторая с конца звезда второй величины называется Мицар. Нормальным глазом близко-близко от нее (на расстоянии 11') видна звездочка пятой величины, которую заметили еще арабы и назвали Алькор, что значит<всадник>. В небольшой телескоп видно, что сам Мицар состоит из двух почти одинаковых звезд с взаимным расстоянием 14 ", а Алькор кажется от них очень далеким. Мицар - визуально-двойная звезда.

В 1887-1889 гг. на Гарвардской обсерватории .было получено много фотографий спектра более яркой компоненты в паре Мицара - Мицара А. Рассматривая эти снимки спектра (спектрограммы), директор обсерватории Эдуард Пиккеринг поразился, увидев, что на одних снимках линии спектра - как линии, а на других они двойные. Когда стали исследовать это подробнее, оказалось, что линии спектра раздваиваются периодически. Точнее говоря, линии по временам расщепляются на две, расстояние между ними все растет, достигает наибольшей величины, затем снова уменьшается, линии опять сливаются и затем снова так же расщепляются, проделывая все свои превращения так же точно, как часы, а вернее сказать, еще точнее. Вскоре А. А. Белопольский в Пулкове и другие ученые за границей открыли еще ряд звезд с периодически раздваивающимися линиями, тоже являющихся спектрально-двойными звездами, как их назвали.

Правильность объяснения такого раздваивания линий в спектре была подтверждена в 1920г., когда с помощью интерферометра, применявшегося для измерения диаметров звезд, удалось измерить расстояние между сочленами одной спектрально-двойной звезды. Измеренное интерферометром, но не ощутимое непосредственно в телескоп ничтожно малое угловое расстояние между ними в точности совпало с вычисленным на основании спектральных данных. Эта звезда была Капелла, и угловое расстояние между составляющими ее звездами было равно в это время 0",045, что чуть-чуть меньше расстояния, на котором две звезды могут быть видимы по отдельности в наибольший в мире телескоп.

Периоды обращения спектрально-двойных звезд более короткие - от 2 часов до 15 лет.

Эти случаи еще раз показывают, как спектральный анализ обнаруживает двойственность звезд, позволяет открывать невидимые движения их. Спектр звезды - это такой ее паспорт, который показывает ее состав и не позволяет укрыть ни одну из ее тайн.

Цефеиды, это переменные звезды, названные так по характерному члену этого типа звезд дельта Цефея. Цефеиды - пульсирующие звезды гиганты. Их периоды заключены в пределах от 1,5 до 50 суток. Цефеиды присутствуют как в Галактике, так и во внегалактических звездных системах - Магеллаповых Облаках и туманности Андромеды. Благодаря цефеидам было измерено точное расстояние до Туманности Андромеды. Амплитуды колебаний блеска цефеид разнообразны. Так, например, Полярная звезда (а Малой Медведицы) - цефеида с периодом, равным Зd,969754, и малой амплитудой колебания блеска: от 2,64 в минимуме до 2,50 в максимуме. У других цефеид амплитуды могут достигать полутора звездных величии. Синхронно с блеском изменяются температура фотосферы, показатели цвета и лучевые скорости, а следовательно, и радиусы фотосферы и атмосферы, в которой возникают спектральные линии. К настоящему времени в Галактике известно около 1000 цефеид. Их изучение и статистическое сопоставление их свойств показало, что совокупность цефеид не однородна по своему составу. Пришлось разделить ее на группы - подклассы. Наиболее многочисленна группа звезд, получивших название дельта-цефеиды, их часто называют классическими цефеидами. Для этих цефеид (к числу которых принадлежит и сама дельта Цефея) характерна зависимость между периодом и формой кривой блеска, открытая и изученная Э. Герцшпрунгом. У цефеид с периодами в пределах от 1,5 до 5 суток кривая изменения блеска гладкая. При более продолжительных значениях периода появляется<горбик> на нисходящей ветви кривой блеска, который постепенно перемещается к максимуму, при периоде около 10 суток совмещается с максимумом, а затем проявляется на восходящей ветви кривой в виде задержки подъема блеска. Таким образом, по величине периода и форме кривой блеска легко отличить дельта-цефеиду от других объектов.

У цефеид меняются показатель цвета и спектральный класс. Мы видим, что светимости делъта-цефеид велики, а их спектральные классы F, G и К. Это свидетельствует о том, что на диаграмме Герцшпрунга-Рессела они относятся к желтым сверхгигантам.

Другой характерный представитель цефеид - W Девы. Были открыты и исследованы другие цефеиды, сходные по своим свойствам с W Девы. Их объединили в подкласс<цефеид-дубльве>. Оказалось, что подобные объекты встречаются в некоторых шаровых звездных скоплениях, как известно, наиболее старых системах, входящих в Галактику. Цефеиды-дубльве принадлежат сферической составляющей Галактики, и введенное разделение на подклассы получило глубокий космогонический смысл.

Кроме этих двух групп, удалось выделить третью группу мало амплитудных цефеид, которые были названы цефеидама-дзета, по имени яркой звезды дзета Близнецов. Они обладают симметричными кривыми блеска и расположены в пространстве вблизи центральных областей спиральных ветвей Галактики. На основе длительных наблюдений применением метода графиков изучено изменение периодов многих цефеид. Обнаружено, что у разных подклассов цефеид эти изменения протекают по-разному.



По словам астрономов, к Земле приближается облако, состоящее из пыли, которое стирает все на своем пути. Оно появилось из черной дыры – на расстоянии 28 000 световых лет от нашей планеты. Астрономы, наблюдающие за небесным телом, говорят о том, что им удалось обнаружить "странный сгусток", который уже окрестили “ сеющим хаос облаком” – он разрушает все на своем пути: кометы, астероиды, планеты и звезды. Теперь он направляется к Земле.

Космический объект, простирающийся на 10 миллионов миль, был обнаружен обсерваторией НАСА Chandra в апреле этого года и, по словам ученых, относится к разряду “кислотного тумана”. Как ожидается, загадочное облако достигнет Земли к 2014 году.

Единственная положительная новость вокруг этого открытия заключается в том, что благодаря нему находят подтверждение ряд высказанных ранее в физике предположений.

“Плохая новость – в том, что полное разрушение нашей солнечной системы неминуемо”, - сообщил Альберт Шервинский, астрофизик при Кембриджском университете.

При этом эксперты уверены, что странное облако состоит из частиц, которые обычно рассеяны у т.н. условного радиуса чёрной дыры – они, в свою очередь, в определенный момент оказались под непосредственным воздействием черной дыры.

По словам Шервинского, эта чрезвычайно крупная дыра находится на расстоянии около 28 000 световых лет от Земли – по расчетам где-то в центре нашей галактики.

Примечательно, что в прошлом году известный физик Стефан Хоукин вынужден был пересмотреть свою теорию черных дыр. Прежде считалось, что ни один объект не способен выйти из мощного гравитационного поля черной дыры. Однако впоследствии ученый пришел к выводу, что информация об этих объектах, попавших в космическую дыру, может быть излучена обратно в трансформированном виде.

Эта извращенная информация, в свою очередь, меняет сущность объекта. “Зараженный” подобным образом объект трансформирует любую информацию о предмете, который встречается у него на пути.

При этом если облако достигнет Земли, то эффект его воздействия на планету будет сродни тому, как если пролить на рукописный чернильный текст воду, которая разъедает слова и превращает в месиво.

По словам Шервинского, информация о приближающейся угрозе в секрете, и НАСА, стараясь избежать паники, не торопится раскрывать свою находку.

При этом астрофизик убежден, что, если облако не свернет со своей траектории, то наша галактика уменьшится до своих прежних размеров, т.е. до изначального состояния рождения вселенной.

Впрочем, ученые уже говорят о возможности спасти население Земли, по крайней мере, какую-то его часть, запустив космический ковчег в галактику Андромеды, которая располагается на удалении 2,1 миллиона световых лет от Земли.

Издание weeklyworldnews, ссылаясь на источник в американском Белом доме, сообщает, что в Вашингтоне новость об очередном конце света встретили спокойно и взвешенно, предлагая не торопить события. Ситуация неясная и очень напоминает беспокойство по поводу глобального потепления, поэтому стоит дождаться окончательных выводов специалистов, отметили в Вашингтоне.



Белые карлики - одна из увлекательнейших тем в истории астрономии: впервые были открыты небесные тела, обладающие свойствами, весьма далёкими от тех, с которыми мы имеем дело в земных условиях. И, по всей вероятности, разрешение загадки белых карликов положило начало исследованиям таинственной природы вещества, запрятанного где-то в разных уголках Вселенной. Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар (США), показало, что их количество превышает 1500. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. История открытия белых карликов восходит к началу 19в, когда Фридрих Вильгельм Бессель, прослеживая движение наиболее яркой звезды Сириус, открыл, что её путь является не прямой линией, а имеет волнообразный характер. Собственное движение звезды происходило не по прямой линии; казалось, что она едва заметно смещалась из стороны в сторону. К 1844г., спустя примерно десять лет после первых наблюдений Сириуса, Бессель пришёл к выводу, что рядом с Сириусом находится вторая звезда, которая, будучи невидимой, оказывает на Сириус гравитационное воздействие; оно обнаруживается по колебаниям в движении Сириуса. Ещё более интересным оказалось то обстоятельство, что если тёмный компонент действительно существует, то период обращения обеих звёзд относительно их общего центра тяжести равен приблизительно 50 годам.

Перенесёмся в 1862г. и из Германии в Кембридж, штат Массачусетс (США). Алвану Кларку, крупнейшему строителю телескопов в США, Университетам штата Миссисипи было поручено сконструировать телескоп с объективом диаметром 18,5 дюйма (46 см), который должен был стать самым большим телескопом в мире. После того как Кларк закончил обработку линзы телескопа, нужно было проверить, обеспечена ли необходимая точность формы её поверхности. С этой целью линзу установили в подвижной трубе и направили на Сириус - самую яркую звезду, являющуюся лучшим объектом для проверки линз и выявления их дефектов. Зафиксировав положение трубы телескопа, Алван Кларк увидел слабый "призрак", который появился на восточном краю поля зрения телескопа в отблеске Сириуса. Затем, по мере движения небосвода, в поле зрения попал и сам Сириус. Его изображение было искажено - казалось, что "призрак" представляет собой дефект линзы, который следовало бы устранить, прежде чем сдать линзу в эксплуатацию. Однако эта возникшая в поле зрения телескопа слабая звёздочка оказалась компонентом Сириуса, предсказанным Бесселем. В заключение следует добавить, что из-за начавшейся первой мировой войны телескоп Кларка так никогда и не был отправлен в Миссисипи - его установили в Дирбоновской обсерватории, вблизи Чикаго, а линзу используют по сей день, но на другой установке. Таким образом, Сириус стал предметом всеобщего интереса и многих исследований, ибо физические характеристики двойной системы заинтриговали астрономов. С учётом особенностей движения Сириуса, его расстояние до Земли и амплитуды отклонений от прямолинейного движения астрономам удалось определить характеристики обеих звёзд системы, названых Сириус А и Сириус В. Суммарная масса обеих звёзд оказалась в 3,4 раза больше массы Солнца. Было найдено, что расстояние между звёздами почти в 20 раз превышает расстояние между Солнцем и Землёй, то есть примерно равно расстоянию между Солнцем и Ураном; полученная на основании измерения параметров орбиты масса Сириуса А оказалась в 2,5 раза больше массы Солнца, а масса Сириуса В составила 95% массы Солнца. После того как были определены светимости обеих звёзд, обнаружилось, что Сириус А почти в 10 000 раз ярче, чем Сириус В. По абсолютной величине Сириуса А мы знаем, что он примерно в 35,5 раза светит сильнее Солнца. Отсюда следует, что светимость Солнца в 300 раз превышает светимость Сириуса В. Светимость любой звезды зависит от температуры поверхности звезды и её размеров, то есть диаметра. Близость второго компонента к более яркому Сириусу А чрезвычайно осложняет определение его спектра, что необходимо для установки температуры звезды. В 1915г. с использованием всех технических средств, которыми располагала крупнейшая обсерватория того времени Маунт-Вилсон (США), были получены удачные фотографии спектра Сириуса. Это привело к неожиданному открытию: тем-пература спутника составляла 8000 К, тогда как Солнце имеет температуру 5700 К. Таким образом, спутник в действительности оказался горячее Солнца, а это означало, что светимость единицы его поверхности также больше. В самом деле, простой расчёт показывает, что каждый сантиметр этой звезды излучает в четыре раза больше энергии, чем квадратный сантиметр поверхности Солнца. Отсюда следует, что поверхность спутника должна быть в 300



© 2012 Мир народной медицины | Все права защищены.Копирование материалов запрещено
Яндекс.Метрика