Человек.Человек,планета,вселенная » Страница 57
Главная Обратная связь Добавить в закладки Сделать стартовой

Еще через 4 года Н.А. Томбази сообщил о встрече со снежным человеком на краю ледника Зему, который лежит на высоте 4500 м. На расстоянии от 180 до 270 м он увидел темное существо, походившее на человека.

В середине нашего столетия в прессе публиковалось довольно много сообщений о встречах с йети, как принято называть это непонятное существо. В 1954 г. ученый из Великобритании Чарльз Стонор предпринял экспедицию в Гималаи специально для того, чтобы найти снежного человека или хотя бы получить его описание от местных жителей. Несмотря на то, что йети команде ученых встретить не удалось, исследователи обнаружили его экскременты. Их анализ показал, что обезьяночеловек питается не только овощами и зеленью, но употребляет в пищу мышей и землю. Это совпадало с показаниями туземцев. Стонор собрал свидетельства очевидцев, которые смогли описать йети. Они, в частности, упоминали о том, что в меню йети входят мелкие грызуны, крупные насекомые и глинистая земля. Шерпы объяснили, что снежные люди имеют серую окраску, телосложением похожи на человека, ходят плавно, слегка наклонившись вперед. Примечательны длинные волосы на голове, на спине и бедрах, тогда как на лице и груди растительность слабее. Рост снежного человека, по словам туземцев, обычно не превышает роста невысокого мужчины.

Другие сообщения, в первую очередь материалы, собранные профессором Рене фон Небески-Войковиц, проведшим три года в Тибете и индийском штате Сикким, свидетельствуют о существовании более высоких особей снежного человека. Согласно этим данным, рост йети в среднем равен 2,10—2,25 м, а цвет волосяного покрова приближается к темно-коричневому. Особенно примечательны его длинные, доходящие до колен руки, овальная, сужающаяся к верху голова и сильно покатый лоб с мощными костями, выступающими поверх глазных впадин.

Тибетские ламы по-своему объясняют факт, что свидетельства разных людей расходятся. Один из буддистских духовных наставников четко обозначил два, пожалуй, даже три вида йети. «Ракши бомпо», ростом с человека, можно отождествить с «йе-те» или «ми-те», о которых впервые услышал Стонор. «Рими» достигают в высоту от 2,10 до 2,70 м, всеядны и обитают в горах на высоте 3000—3900 м. Возможно, «ракши бомпо» — это всего-навсего молодые особи «рими». «Рими» попадаются наиболее часто. Реже всего, по словам тибетцев, можно встретить «ньялмо» — плотоядное двуногое существо ростом от 3,90 до 4,80 м, которое якобы живет на вершинах гор не ниже 3000 м. Однако до сих пор о них ничего не известно, кроме неправдоподобных историй.



Чем же объяснить то, что происходит в Бермудском треугольнике? Разумеется, однозначного ответа на этот вопрос нет. Но версий ученые выдвигают множество.

1. Подводные землетрясения Вполне возможно, в результате катастрофических смещений дна океана могут возникать волны до 60 м высотой, способные мгновенно, не оставив никаких следов, поглотить судно любой величины. При дрейфе материков в течение миллионов лет в земной коре образовались колоссальные полости, а во время землетрясения свод такой пещеры может обрушиться. Если пещера находится под океанским дном, то в нее неизбежно хлынет вода, на поверхности возникнет сильнейший водоворот, который засасывает и воду, и воздух.

2. Атланты (или другие подводные цивилизации) Возможно, сверхъестественные силы, которые вмешиваются в ход земных событий, - остаточные следы деятельности погибшей цивилизации атлантов, материк которых, как считается, был где-то поблизости. Атланты могли стать современными подводными жителями.

3. Голос моря При штормах и сильных ветрах над поверхностью моря происходит срыв потока на гребнях волн; при скорости ветра больше скорости распространения волн воздух у гребней задерживается, образуя сжатие, а над подошвами волн - разрежение. Возникающие таким образом сгущения и разрежения воздуха распространяются в виде звуковых колебаний с частотой до 10 Гц. При скорости ветра 20 м/с мощность "голоса" может достигать 3 Вт с каждого метра фронта волны. При определенных условиях шторм генерирует инфразвук мощностью уже в десятки кВт. Причем основное излучение инфразвука идет приблизительно в диапазоне около 6 Гц - наиболее опасном для человека. "Голос", распространяясь со скоростью звука, значительно опережает ветер и морские волны, почти не рассеиваясь с расстоянием. Так что где-то бушует шторм, а в тысяче километров от этого места экипаж какой-то шхуны сходит от 6-герцового излучения с ума и в ужасе бросается в абсолютно спокойное море. При колебаниях порядка 6 Гц человек испытывает чувство беспокойства, часто переходящее в безотчетный ужас; при 7 Гц возможен паралич сердца и нервной системы; при колебаниях на порядок выше возможно разрушение технических устройств. Эта гипотеза проливает свет на исчезновение моряков.

4. Противотечения Предполагается, что под действием ветра северного направления и набегающих волн в глубине океана рождаются водопады высотой несколько километров и мощные нисходящие течения, справиться с которыми суда не в состоянии.

5. Гидродинамический эффект Из донного грунта выделяется газ, он отрывается от дна и движется к поверхности; при этом образуется электромагнитное поле. Достигнув поверхности, газожидкостный объем может подняться на высоту несколько сот метров. Всякий корабль или самолет, очутившийся в зоне выброса, низвергнется в пучину; экипаж, попав в газовое облако, обязательно погибнет.

6. Выбросы метана Возможно, во всем виноват истекающий из дна метан. При взрыве большое количество метана оказывается в морской воде и плотность воды уменьшается во столько раз, что не только корабли в считанные секунды уходят на дно, но и люди, выбросившиеся с корабля в спасательных жилетах, камнем идут на дно. А когда метан достигает поверхности воды, он поднимается в воздух и представляет опасность для пролетающих в этом месте самолетов.

7. Нападение животных Нападения гигантских кальмаров или других подводных животных - вполне реальная версия, ведь столько еще неразгаданных тайн на дне океана.

8. Пришельцы Ряд уфологов считает, что на морском дне, возможно, установлена сигнальная аппаратура, питаемая мощным источником энергии, которая служит маяком для НЛО. Именно эта аппаратура периодически нарушает работу навигационных приборов и оказывает прямое или косвенное губительное воздействие на человеческий организм.

9. Временная ловушка Предполагается, что в Бермудском треугольнике создалась пространственно-временная ловушка, в которой время течет с иной скоростью. Корабль или самолет, попадая в такую область, перестает существовать в нашем мире и переносится в будущее, прошлое или даже в парамир. К примеру, не так давно, в 1993 году, в треугольнике исчезло рыбацкое судно с тремя рыбаками, которых сочли погибшими; рыбаки объявились через год и рассказали, что во время шторма, когда их поврежденное судно начало тонуть, их спас корабль, команда которого была одета в старинные одежды и говорила на староанглийском языке. Для самих рыбаков происшествие уложилось в несколько дней. Есть множество подобных историй, в которых фигурируют попавшие из прошлого парусные суда, подводные лодки и самолеты.

Проверить любую из гипотез достаточно трудно. Одно бесспорно и неопровержимо - Бермудский треугольник остается величайшим страхом, величайшим чудом, величайшим обманом и величайшей надеждой на разгадку в истории исследования аномальных зон в мире.



Рентгеновские пульсары - это тесные двойные системы, в которых одна из звезд является нейтронной, а другая - яркой звездой-гигантом. Известно около двух десятков этих объектов. Первые два рентгеновских пульсара - в созвездии Геркулеса и в созвездий Центавра - открыты в 1972 г. (за три года до обнаружения барстеров) с помощью американского исследовательского спутница «Ухуру»). Пульсар в Геркулесе посылает импульсы с периодом 1,24 с. Это период вращения нейтронной звезды. В системе имеется еще один период - нейтронная звезда и ее компаньон совершают обращение вокруг их общего центра тяжести с периодом 1,7 дня. Орбитальный период был определен в этом случае благодаря тому (случайному) обстоятельству, что «обычная» звезда при своем орбитальном движении регулярно оказывается на луче зрения, соединяющем нас и нейтронную звезду, и потому она заслоняет на время рентгеновский источник. Это возможно, очевидно, тогда, когда плоскость звездных орбит составляет лишь небольшой угол с лучом зрения. Рентгеновское излучение прекращается приблизительно на 6 часов, потом снова появляется, и так каждые 1,7 дня.

(Между прочим, наблюдение рентгеновских затмений для барстеров до последнего времени не удавалось. И это было странно: если орбиты двойных систем ориентированы в пространстве хаотически, то нужно ожидать, что из более чем трех десятков барстеров по крайней мере несколько имеют плоскости орбитального движения, приблизительно параллельные лучу зрения (как у пульсара в Геркулесе), чтобы обычная звезда могла периодически закрывать от нас нейтронную звезду. Только в 1982 г., т. е. через 7 лет после открытия барстеров, один пример затменного барстера был, наконец, обнаружен.) Длительные наблюдения позволили установить еще один - третий - период рентгеновского пульсара в Геркулесе: этот период составляет 35 дней, из которых 11 дней источник светит, а 24 дня нет. Причина этого явления остается пока неизвестной. Пульсар в созвездии Центавра имеет период пульсаций 4,8 с. Период орбитального движения составляет 2,087 дня - он тоже найден по рентгеновским затмениям. Долгопериодических изменений, подобных 35-дневному периоду пульсара в созвездии Геркулеса у этого пульсара не находят. Компаньоном нейтронной звезды в двойной системе этого пульсара является яркая видимая звезда-гигант с массой 10-20 Солнц. В большинстве случаев компаньоном нейтронной звезды в рентгеновских пульсарах является яркая голубая звезда-гигант. Этим они отличаются от барстеров, которые содержат слабые звезды-карлики. Но как и в барстерах, в этих системах возможно перетекание вещества от обычной звезды к нейтронной звезде, и их излучение тоже возникает благодаря нагреву поверхности нейтронной звезды потоком аккрецируемого вещества.

Это тот же физический механизм излучения, что и в случае фонового (не вспышечного) излучения барстера. У некоторых из рентгеновских пульсаров вещество перетекает к нейтронной звезде в виде струи (как в барстерах). В большинстве же случаев звезда-гигант теряет вещество в виде звездного ветра - исходящего от ее поверхности во все стороны потока плазмы, ионизированного газа. (Явление такого рода наблюдается и у Солнца, хотя солнечный ветер и слабее - Солнце не гигант, а карлик.) Часть плазмы звездного ветра попадает в окрестности нейтронной звезды, в зону преобладания ее тяготения, где и захватывается ею.

Однако при приближении к поверхности нейтронной звезды заряженные частицы плазмы начинают испытывать воздействие еще одного силового поля магнитного поля нейтронной звезды-пульсара. Магнитное поле способно перестроить аккреционный поток, сделать его несферически-симметричным, а направленным. Как мы сейчас увидим, из-за этого и возникает эффект пульсаций излучения, эффект маяка. Есть все основания полагать, что нейтронные звезды рентгеновских пульсаров обладают очень сильным магнитным полем, достигающим значений магнитной индукции 108– 109Тл, что в 1011– 1012Тл раз больше среднего магнитного поля Солнца. Но такие поля естественно получаются в результате сильного сжатия при превращении обычной звезды в нейтронную. Согласно общим соотношениям электродинамики магнитная индукция В поля, силовые линии. которого пронизывают данную массу вещества, усиливается при уменьшении геометрических размеров R этой массы.

Это соотношение следует из закона сохранения магнитного потока. Стоит обратить внимание на то, что магнитная индукция нарастает при сжатии тела точно так же, как и его частота вращения. При уменьшении радиуса звезды от значения, равного, например, радиусу Солнца 109м, до радиуса нейтронной звезды, 104 м магнитное поле усиливается на 10 порядков. Магнитное поле с индукцией B=10-4 Тл сравнимое с полем Солнца, считается более или менее типичным для обычных звезд; у некоторых «магнитных» звезд обнаружены поля в несколько тысяч раз большие, так что вполне можно ожидать, что определенная (и не слишком малая) доля нейтронных звезд действительно должна обладать очень сильным, магнитным полем. К такому заключению пришел советский астрофизик Н. С. Кардашев еще в 1964 г.



Небольшое планетоподобное тело Солнечной системы (малая планета). Самый большой из них Церера, имеющий932 км в поперечнике. Астероиды по размерам сильно различаются, самые маленькие из них не отличаются от частиц пыли. Несколько тысяч астероидов известно под собственными именами. Полагают, что насчитывается до полумиллиона астероидов с диаметром более полутора километров. Однако общая масса всех астероидов меньше одной тысячной массы Земли. Большинство орбит астероидов сконцентрировано в поясе астероидов между орбитами Марса и Юпитера на расстояниях от 2,0 до 3,3 а.е. от Солнца. Имеются, однако, и астероиды, чьи орбиты лежат ближе к Солнцу, типа группы Амура, группы Аполлона и группы Атена. Кроме того, имеются и более далекие от Солнца, типа центавров. На орбите Юпитера находятся троянцы, которых открыто уже более 1560 (первый открыт в 1906 году). 21 августа 2001 года открыл маленький астероид2001 QR322на орбите Нептуна. Через год стало ясно, что это первый "троянец" газового гиганта. На 2 октября 2001г астрономы всего мира наблюдали 146.677 астероидов. Орбиты 30.716 из них определены и они получили собственные номера. Для остальных почти 116 тысяч, следовательно, еще предстоит "пройти" процедуру нумерации. Имена присвоены 8.914 астероидам. Все началось 1 января 1801 года, когда итальянский астроном Джованни Пиацци (Giovani Piazzi) открыл первый астероид (1) Ceres. Вторую малую планету - (2) Pallas - удалось обнаружить 28 марта 1802 года немецкому астроному Х.В.Ольберсу (H.V.Olbers). Третью - (3) Juno - открыл 1 сентября 1804 года немецкий астроном К.Гардинг (K.Harding). Четвертую - (4) Vesta - открыл 29 марта 1807 года все тот же Х.В.Ольбертс. Затем наступил перерыв на 38 лет, когда астрономам не удавалось сделать новых открытий. Лишь 8 декабря 1845 года немцу К.Л.Хенке (K.L.Hencke) удалось отыскать на звездном небе астероид (5) Astraea. Дальше открытия посыпались как из рога изобилия. В 1847 году были открыты малые планеты (6) Hebe, (7) Iris и (8) Flora, в 1848 году - (9) Metis, в 1849 году - (10) Hugiea, в 1850 году - (11) Parthenope, (12) Victoria и (13) Egeria, в 1851 году - (14) Irene и (15) Eunomia, и так далее с нарастающими темпами.К 1 января 1901 года число открытых астероидов составило 463. В минувшем веке темпы открытий еще более увеличились. За первое десятилетие были открыты 270 малых планет, за второе - 245, за третье - 340, за четвертое - 627.

"Галилео" (справа) передал на Землю показанное слева изображение астероида Гаспра в октябре 1991 г. Условные цвета подчеркивают контрасты изображения. Размеры астероида - 20 x 12 x 11км ; видны кратеры размером всего в 100 м. К 1 января 1951 года количество найденных астероидов составило 2153. Сколько открытий удалось сделать за вторую половину ХХ века, легко подсчитать. Причем 2/3 новых астероидов удалось обнаружить за последние три года.

Астероиды могут быть классифицированы по спектру отраженного солнечного света: 75% из них очень темные углистые астероиды типа С, 15% - сероватые кремнистые астероиды типа S, а оставшиеся 10% включают астероиды типа М (металлические) и ряд других редких типов. Классы астероидов связаны с известными типами метеоритов. Имеется много доказательств, что астероиды и метеориты имеют сходный состав, так что астероиды могут быть теми телами, из которых образуются метеориты. Самые темные астероиды отражают 3 - 4% падающего на них солнечного света, а самые яркие - до 40%. Многие астероиды регулярно меняют яркость при вращении. Вообще говоря, астероиды имеют неправильную форму. Самые маленькие астероиды вращаются наиболее быстро и очень сильно различаются по форме. Космический аппарат “Галилео” при полете к Юпитеру прошел мимо двух астероидов, Гаспра (29 октября 1991г) и Ида (28 августа 1993г). Полученные детальные изображения позволили увидеть их твердую поверхность, изъеденную многочисленными кратерами, а также то, что Ида имеет небольшой спутник. И наконец 12 февраля 2001г американский межпланетный зонд “NEAR-Shoemaker” достиг поверхности астероида (433) Эрос (Eros) и проработал на поверхности до 1 марта 2001г.

Это изображение - наиболее детальная фотография естественного спутника, имеющегося у астероида 243 Ида, полученная электронной системой CCDАМC "Галилео" во время его сближения с астероидом 28 августа 1993 г. Каждый элемент изображения соответствует на поверхности спутника участку поперечником около 39 м. На спутнике астероида ясно видно более десятка кратеров (диаметром более 80 м).Большой кратер, расположенный на терминаторе, имеет в поперечнике около 300 м. Спутник похож на яйцо с размерами 1,2 x 1,4 x 1,6 км. Первый спутник у астероида был замечен в 1993 году во время пролета межпланетного зонда "Galileo" мимо малой планеты (243) Ida. Спустя шесть лет спутник обрел собственное имя - Dactile. В последующие годы спутники были открыты у следующих астероидов: (3671) Dionysus, (45) Eugenia, (762) Pulcova, (90) Antiope, (87) Sylvia, (107) Camilla, (3749) Balam, 1998 WW31, 1999 KW4,(22) Kalliope, (617) Patroclus.На 1 января 2002г открыто двенадцать астероидов, имеющий спутник, причем у последних шести обнаружены в 2001г.

К середине апреля 2002г выяснилось, что одно из самых удаленных от Земли небесных тел в Солнечной системе,крупный представитель пояса Койпера- астероид 1998 WW31является двойным. Иначе говоря, это два астероида, вращающиеся по эллиптическим орбитам вокруг общего центра масс. Изучение 1998 WW31 с помощью орбитального телескопа “Hubble” позволило выяснить весьма любопытные подробности об этом небесном теле. Так, установлено, что период обращения “сладкой парочки” вокруг Солнца составляет 301 год, а период обращения вокруг центра масс двойной системы - 570 дней. Орбиты астероидов сильно вытянутые и расстояние между ними меняется в пределах от 4 до 40 тысяч километров.

28 сентября 2002г открыт спутник у астероида (121) Hermione.Сам астероид Hermione имеет диаметр 209 км, а его спутник- около 13 км. Новая пара - классический вариант малой планеты со спутником. Таковых в Солнечной системе пока найдено семь (вместе с последним открытием). В двух случаях, когда было объявлено об открытии спутников у астероидов (90) Antiope и (3749) Balam, правильнее говорить о двойной системе, так как небесные тела движутся вокруг общей точки масс, а не один вокруг другого.

С Земли можно получить информацию о трехмерной структуре астероидов с помощью большого радиолокатора Аресибской обсерватории. Астероиды, как полагают, являются остатками вещества, из которого сформировалась Солнечная система. Это предположение подкреплено тем, что преобладающий тип астероидов внутри пояса астероидов меняется с увеличением расстояния от Солнца. Столкновения астероидов, происходящие на больших скоростях, постепенно приводят к тому, что они разбиваются на мелкие части.

Центр имени Эймса опубликовал данные за 2001 год о поиске околоземных астероидов. По состоянию на 28 января 2002 года общее число пролетающих мимо Земли астероидов составляет 1743, в том числе 587 из них имеют размеры более 1 км. В 2001 году было открыто 433 околоземные малые планеты, причем 103 из них имеют размеры более 1 км (в 2000г -125 )."Лидером" в этом вопросе являлась автоматизированная система наблюдений LINEAR в Массачусетском технологическом институте, с помощью которой удалось обнаружить 269 астероидов (67 размером более 1 км). На втором месте другая автоматизированная система NEAT-P в Паломарской обсерватории - 59 (13). На третьем - LONEOS в Обсерватории Ловелла - 45 (12). На четвертом - NEAT-M в Обсерватории Мауи - 34 (10). На пятом - система Spacewatch-I в Обсерватории Китт-Пик - 17 (0). На шестом - Spacewatch-II в Китт-Пик - 5 (0). В других обсерваториях мира открыты еще 4 околоземных астероида, в том числе один с размером более 1 км.

Десять лет назад с помощью инфракрасного телескопа у звезды дзета-Зайца был обнаружен диск необычно теплой пыли. Дальнейшие исследования к 2002г показали, что, скорее всего, в этой пыли идет образование астероидов или планет, подобно тому, как это происходило в нашей собственной солнечной системе. Также вполне возможно, что этот теплый пылевой диск скрывает пояс астероидов.Звезда дзета-Зайца находится по космическим понятиям совсем рядом от нас - на расстоянии 70 световых лет. Ее масса вдвое превышает массу нашего Солнца. Известно также, что это очень молодая звезда, ей всего лишь 100 миллионов лет. По сравнению с ней наше Солнце очень древнее. Температура пылевых частиц, окружающих дзета-Зайца, составляет около 77 градусов С. А масса содержимого этого диска сравнима с массой Земли, то есть в 1000 раз больше, чем масса астероидного пояса в нашей солнечной системе. Однако самой большой неожиданностью для астрономов стало то, что пылевой диск с такими параметрами вообще не должен был бы находиться в этом месте. Он располагается так близко к самой звезде, что, по идее, все составляющие его частицы и частички материи должны были бы давно упасть на звезду дзета-Зайца под действием силы гравитационного притяжения. Значит, существует какой-то источник пополнения материи в пылевом диске.

В начале февраля 2003г с помощью автоматической системы поиска околоземных астероидов LINEAR (Lincoln Near Earth Asteroid Research) при Массачусетском технологическом институте найден астероид, орбита которого полностью лежит внутри орбиты Земли. Это третье подобное небесное тело в Солнечной системе (после Венеры и Меркурия).Малая планета получила обозначение 2003 CP20. Его размер не превышает 1 км. Для нашей планеты астероид опасности не представляет, так как никогда не приближается к Земле ближе, чем на 28,4 миллиона км.

Пояс астероидов - область Солнечной системы, расположенная на расстоянии от 2,0 до 3,3 а.е. от Солнца, где лежит подавляющее большинство орбит астероидов. Внутри пояса имеются как области концентрации орбит, которые соответствуют группам и семействам астероидов, так и области, в которых астероидов практически нет (известные как пробелы Кирквуда). Пропорции различных типов астероидов в различных частях пояса заметно меняются. На внутреннем краю 60% астероидов составляют кремнистые, а 10% - углистые; на внешнем крае ситуация другая - 80% углистых и только 15% кремнистых. Пояс астероидов разделяет внутреннюю и внешнюю части Солнечной системы.

Пробелы Кирквуда Ненаселенные области в радиальном распределении астероидов, возникающие из-за соизмеримости и резонансов их периодов обращения с периодом обращения Юпитера. В распределении астероидов имеются заметные пустоты, соответствующие отношениям периодов 4:1, 3:1, 5:2, 7:3 и 2:1. Любые астероиды, находившиеся ранее на таких орбитах, подверглись бы регулярным возмущениям из-за гравитационного взаимодействия с Юпитером. Объяснение этого факта было дано Д. Кирквудом в 1857г. Однако на расстояниях больше 3 а.е. от Солнца подобные резонансы (в отношениях 3:2, 4:3 и 1:1) соответствуют уже не пустым промежуткам, а изолированным группам астероидов. Причины этого до сих пор полностью не поняты.



Фундаментом теории звездообразования являются данные о межзвездной среде. Три столетия назад Исаак Ньютон в письме к Ричарду Бентли высказал мысль о том, что звезды и планеты под действием силы гравитации "сгустились" из разреженного вещества, заполнявшего некогда Вселенную. С той поры эта мысль уверенно прокладывала себе дорогу, опираясь на наблюдательные данные о межзвездном веществе. Как выяснилось, оно и сейчас, в нашу эпоху в виде разреженного газа и пыли заполняет пространство между звездами. В разных областях Галактики межзвездный газ существенно различается по своим физическим параметрам, в определенных пределах меняется и его химический состав.

Однако для плодотворных исследований ученым всегда требуется упрощенная рабочая модель объекта. Лет 20 назад межзвездную среду представляли в виде горячего газа (с температурой Т = 104 K), в котором плавают холодные облака (Т = 102 К). Эта двухкомпонентная модель позволила объяснить многие явления, но к середине 70-х годов под напором новых фактов ее пришлось уточнить: внеатмосферные ультрафиолетовые наблюдения указали на существование очень горячего газа (Т = 106 К), заполняющего большую часть объема Галактики, а наземные радионаблюдения открыли нам очень холодный молекулярный газ (Т = 10 К), собранный в массивные облака вблизи галактической плоскости.

Теперь принято представлять межзвездный газ как четырехфазную среду (таблица), хотя и такая модель не исчерпывает всего многообразия физических условий в межзвездном пространстве. Например, в этой модели не представлены расширяющиеся остатки вспышек Сверхновых (Т = 108), планетарные туманности и некоторые другие газовые образования, не находящиеся в равновесии по давлению с основными четырьмя фазами межзвездного газа. Действительно, их объем и масса в каждый момент времени не существенны по сравнению с уже имеющимся в Галактике газом. Однако именно они поддерживают баланс вещества и энергии в этом постоянно остывающем и сгущающемся в звезды газе.

Основные фазы межзвездного газа

Фаза Температура, К Плотность, см-3 Доля объема Галактики, % Горячая, HII 300000 0,016 74 Теплая, HII 8000 0,25 23 Прохладная,HI 80 40 2 Холодная,H2 10 300 0,8

Химический состав межзвездного газа примерно такой же, как у Солнца и у большинства наблюдаемых звезд: на 10 атомов водорода (Н) приходится 1 атом гелия (Не) и незначительное количество других, более тяжелых элементов; среди них больше всего кислорода (О), углерода (C) и азота (N). В зависимости от температуры и плотности газа его атомы находятся "в нейтральном или ионизованном состоянии, входят в состав молекул или твердых конгломератов - пылинок.

Вообще говоря, для каждого химического элемента существует свой диапазон условий, при которых он находится в том или ином состоянии ионизации. Но поскольку подавляющее большинство атомов принадлежит водороду, его свойства и определяют состояние межзвездного газа в целом: горячая и теплая фазы являются областями ионизованного водорода (их называют области или зоны НII), прохладная фаза содержит преимущественно нейтральные атомы водорода (облака НI), а холодная фаза состоит в основном из молекулярного водорода (Н2), который образуется, как правило, во внутренних плотных частях облаков НI.

Молекулы водорода были впервые выявлены в межзвёздной среде в 1970 г. по ультрафиолетовым линиям поглощения в спектрах горячих звезд. В том же году в межзвездном пространстве были найдены молекулы угарного газа (СО) по их радиоизлучению с длиной волны l = 2,6 мм. Эти две молекулы наиболее распространены в космосе, причем молекул Н2 в несколько тысяч раз больше, чем молекул СО.

Познакомимся с молекулой водорода, поскольку это главный строительный материал, из которого формируются звезды. Когда два атома водорода подходят близко друг к другу, их электронные оболочки резко перестраиваются: каждый из электронов начинает двигаться вокруг двух протонов, связывая их между собой наподобие электрического "клея". В космических условиях объединение атомов водорода в молекулы происходит, скорее всего, на поверхности пылинок, которые играют роль своеобразного катализатора этой реакции.

Молекула водорода обладает не очень большой прочностью: для ее разрушения (диссоциации) нужна энергия 4,5 эВ или больше. Такую энергию имеют кванты с длиной волны короче чем 275,6 нм. Подобных ультрафиолетовых квантов в Галактике много - их излучают все горячие звезды. Однако сама молекула Н2 поглощает эти кванты крайне неохотно. Обычно разрушение молекул Н2 происходит следующим образом. Квант с энергией 11,2 эВ (l = 101.6 нм) переводит один из электронов молекулы в возбужденное состояние. Обратный переход в основное состояние, как правило, сопровождается излучением таого же кванта, но иногда квант не излучается, а энергия расходуется на возбуждение колебаний молекулы, которые заканчиваются ее распадом.

Как известно, жесткие ультрафиолетовые кванты с энергией более 13,6 эВ ионизуют атомы водорода и поэтому полностью поглощаются межзвездной средой в непосредственной близости от горячих звезд. Более мягкие кванты, в том числе и с энергией 11,2 эВ, почти беспрепятственно распространяются в Галактике и разрушают молекулярный водород везде, где он для них доступен. Единственное место, где молекула Н2 может жить сравнительно долго, - это недра плотных газопылевых облаков, куда ультрафиолетовые кванты не могут пробиться сквозь плотную пылевую завесу. Но к сожалению, по этой же причине молекулярный водород становится практически недоступным для наблюдения.

Комбинация первого возбужденного электронного состояния молекулы Н2 с различными ее квантовыми переходами дает набор спектральных линий в диапазоне длин волн 99,1-113,2 нм. Когда свет горячей звезды проходит сквозь полупрозрачное облако или сквозь наружные разреженные слои гигантских плотных облаков, в его спектре образуются соответствующие линии поглощения молекулы Н2. Они-то и были зафиксированы в 70-х годах с помощью космических телескопов в спектрах полутора сотен близких звезд.

Однако сообщить нам сколько-нибудь полные сведения о распределении молекулярного водорода в Галактике ультрафиолетовое излучение не может. Ему не дробиться в недра массивных облаков, где как раз и находится главное хранилище холодного газа -непосредственного предка молодых звезд. Поэтому распределение молекул На в нашей и в других галактиках изучают пока косвенными методами: по распределению других молекул, имеющих спектральные линии, удобные для наблюдения. Самая популярная в этом отношении молекула угарного газа, она же окись углерода, т. е. СО.

Ее энергия диссоциации 11,1 эВ, поэтому она может существовать там же, где молекулярный водород. Сталкиваясь с другими атомами и молекулами, молекулы СО возбуждаются и затем излучают линии так называемых вращательных переходов. Наиболее длинноволновая из них (l = 2,6 мм) легко наблюдается во многих областях Галактики: светимость некоторых молекулярных облаков в линии СО достигает нескольких светимостей Солнца (Lc = 4·1033 эрг/с).

Радионаблюдения в линиях СО и некоторых других.молекул (HCN, ОН, CN) позволяют охватить все облако в целом, все его области с разнообразными физическими условиями. Наблюдения же нескольких линий одной молекулы дают возможность определить в каждой области температуру и плотность газа. Однако переход от наблюдаемой интенсивности в линии излучения какой-либо молекулы (даже такой распространенной, как СО) к полной концентрации, а следовательно, и массе газа таит в себе значительную неопределенность. Приходится делать предположения о химическом составе облаков, о доле атомов, "погребенных" в пылинках, и т. п. Точное значение коэффициента перехода от интенсивности линии СО к количеству молекул Н2 до сих пор бурно обсуждается. Разные исследователи используют значение этого коэффициента, различающееся в 2-3 раза.

Соответственно и содержание молекулярного газа в Галактике известно с такой же, если не с худшей, точностью. Особенно сложно определить содержание молекулярного газа вдали от Солнца, например в окрестности центра Галактики. Поскольку звездообразование там происходит более интенсивно, чем у нас, на периферии Галактики, межзвездная среда там сильнее обогащена тяжелыми элементами - продуктами термоядерного синтеза. Точно пока нельзя сказать, но, если принять во внимание изменение химического состава вдоль радиуса галактического диска, содержание элементов группы CNO в ядре Галактики должно быть раза в 3 выше, чем в окрестности Солнца.

Если это действительно так, то соответственно в 3 раза ниже следует брать коэффициент перехода СО - Н2. Эти и другие неопределенности приводят к тому. что масса молекулярного газа во внутренней области Галактики (R<10 кпк) оценивается различными исследователями от 5·108 до 3·109 Мс.



Народные рецепты красоты
© 2012 Мир народной медицины | Все права защищены.Копирование материалов запрещено
Яндекс.Метрика