Главная Обратная связь Добавить в закладки Сделать стартовой

Компьютерное моделирование пульсаров - быстро вращающихся нейтронных звезд. Сфера в центре представляет собой нейтронную звезду, окружающие ее линии, выходящие из магнитных полюсов - магнитное поле. Вращающееся магнитное поле ускоряет заряженные частицы вдоль магнитных силовых линий, в результате чего генерируется излучение высоких энергий (белые и голубые лучи). NASA/GSFC.

Группа ученых, возглавляемая астрономами колумбийского университета, обнаружила самый молодой пульсар, представляющий собой быстро вращающийся сильнонамагниченый объект размером порядка 10 км, который возник в результате взрыва массивной звезды примерно 700 лет назад. Пульсар обладает рядом необычных свойств, которые могут заставить ученых пересмотреть процессы рождения и развития этих объектов.

Так, например, возраст других известных пульсаров оценивается от тысяч до миллионов лет. Этот пульсар, находящийся в остатке вспышки сверхновой Kes 75, примерно на 300 лет моложе второго по возрасту пульсара в Крабовидной туманности, который ученые долгое время типичным представителем молодых пульсаров. В сравнении с пульсаром в Крабе, пульсар в Kes 75 вращается более чем в 10 раз медленнее, в то же время скорость замедления вращения в 10 раз больше. Кроме того пульсар имеет в 10 раз более сильное магнитное поле. Вот эти то необычные свойства и заставят, скорее всего, ученых переосмыслить этапы эволюции пульсаров.

"Ученые искали этот пульсар много лет", сказал доктор Eric Gotthelf, сотрудник колумбийской астрофизической лаборатории и руководитель группы авторов статьи, посланной в The Astrophysical Letters."Мы регистрировали радиоизлучение из ядра Kes 75, что указывало на существование пульсара. Однако проблема заключалась в том, что мы ожидали обнаружить быстровращающийся пульсар, типа пульсара в Крабе. То что мы нашли, совершенно отличается от наших ожиданий".

Пульсар - это нейтронная звезда - ядерный остаток гигантской звезды с массой по крайней мере в 10 раз большей массы Солнца. Такая звезда после истощения запасов ядерного топлива взрывается и сбрасывает все свои внешние оболочки, остается лишь ядро, которое сжимается до размеров примерно 10 км. Из выброшенного вещества формируется красивый остаток сверхновой, доступный для наблюдений в течении тысячелетий как в оптике, так и в радио и рентгеновском диапазонах.

Пульсары имеют мощное магнитное поле, по силовым линиям которого электроны движутся от полярных шапок во внешние области. Эти электроны, ускоряясь до околосветовых скоростей, излучают практически во всем диапазоне электромагнитных волн. Астрономы наблюдают вспышки излучения в тот момент, когда излучающий луч пульсара направлен на Землю.

Расположение пульсара в остатке сверхновой вовсе не обязательно. В результате асимметричного взрыва сверхновой, пульсар может быть выброшен далеко за пределы остатка. В других ситуациях направление излучающего луча не совпадает с направлением на Землю, и тогда пульсар мы не увидим. Или же, как в случае с недавней сверхновой 1987а, ядро звезды может сколлапсировать в черную дыру.

Пульсар, получивший номер PSR J1846-0258, был обнаружен в результате детальных исследований площадки вокруг Kes 75 с помощью спутника Rossi и с использованием архивных записей другого японо-ямериканского рентгеновского телескопа.

По рентгеновским наблюдениям период пульсара составляет 0.3 секунды, что очень много для молодого пульсара. Возраст пульсара - 700 лет, что совпадает с возрастом остатка сверхновой. Пульсар имеет примерно в 10 раз более сильное магнитное поле по сравнению с обычными пульсарами, и в 10 раз слабее магнитного поля магнетаров - таинственных, недавно обнаруженных объектов со сверхсильными магнитными полями. Таким образом, пульсар в Kes 75 может оказаться как раз недостающим звеном между этими классами объектов.



Основные сведения о галактиках собраны в нескольких каталогах. Первый галактический каталог был создан в 1784 г. Ш. Мессье и П. Мешеном. В него вошли 108 туманностей, которые авторы .назвали неподвижными, чтобы не путать с движущимися кометами. Объекты, вошедшие в каталог Мессье, обозначают буквой М с порядковым номером. Так, например, М31 обозначение туманности Андромеды. В настоящее время широко используется "Новый общий каталог" Дрейера (его первая часть была опубликована в 1888 г.), в него вошли около 13000 объектов. Галактика М31 в каталоге Дрейера обозначается NGC 224. В конце 60 гг. нашего столетия были созданы "Морфологический каталог галактик" (группа Б. А. Воронцова-Вельяминова) и "Второй библиографический каталог ярких галактик" (группа Ж.Вокулера). Эти каталоги содержат десятки тысяч объектов.

Галактики отличаются друг от друга прежде всего своим внешним видом. В 1925 г. Хаббл предложил морфологическую классификацию галактик, которая в несколько модифицированном виде используется и поныне. Введены следующие основные классы галактик: эллиптические Е, линзообразные SO, спиральные S, спиральные с перемычкой SВ, неправильные Ir (рис. 1).

Поверхностная яркость эллиптических галактик плавно уменьшается от центра к периферии по закону, описываемому уравнением эллипса. Внутренней структуры на фотографиях эллиптических галактик не обнаружено, хотя у многих из них есть маленькие звездообразные ядрышки.

Только в самых близких галактиках удается выделить отдельные звезды. Поэтому обычно звездный состав галактик определяют из анализа суммарного излучения звезд. Согласно наблюдениям, эллиптические галактики содержат только желтые и красные звезды, в них практически нет газа и нет молодых звезд. Возраст звезд в этих системах не менее 5- 7 млрд лет.

Спектральные линии Е-галактик очень широкие из-за большой дисперсии скоростей звезд (до 200 км/с). Звезды вращаются вокруг центра галактики в разных плоскостях. Видимое сжатие Е-галактик связано с тем, что не все орбиты звезд устойчивы. Орбиты, плоскости которых параллельны оси вращения всей системы, неустойчивы. При небольшом гравитационном влиянии соседних звезд движение звезды по такой орбите быстро изменяется: эллипс превращается в отрезок прямой, и звезда падает на центр звездной системы. Как целое Е-галактики вращаются медленно, причем более уплощенные системы вращаются быстрее, чем сферические.

Характерные параметры Е-галактик охватывают широкий диапазон: радиусы 5-10 кпк, массы 106 - 1013МСолнца, светимости 106 - 1012LСолнца (МСолнца = 2•1033 г, LСолнца = = 4•1033 эрг/с).

Самые крупные из Е-галактик выделяют в отдельную группу cD-галактик. В этих галактиках имеется компактная звездная система, окруженная гигантской разреженной оболочкой из звезд. Размеры оболочки могут быть десятки и даже сотни килопарсек.

Галактики cD встречаются редко. Ближайшая к нам и наиболее изученная из них - система М 87. Радиус ее центральной компоненты около 8 кпк, а оболочка прослеживается на расстоянии до 60 кпк от центра. Масса М 87 около 1012МСолнца. Самая большая из известных cD-систем имеет радиус оболочки около 2 Мпк - галактика А1413.

Оказывается, что cD-системы находятся всегда в центре скоплений галактик. Галактика М 87 - это центральная система в скоплении галактик в созвездии Дева.

Массовые определения различных характеристик галактик позволили установить важные эмпирические закономерности. Оказывается, что чем больше светимость Е-галактик LB, тем больше ширина линий в ее спектре. Ширина линий пропорциональна дисперсии скоростей звездsu.

Связь между LB иsu имеет вид LB ~su4. Это соотношение называется соотношением Фабера - Джексона, его можно использовать для измерения расстояний во Вселенной. Было также установлено, что гигантские эллиптические галактики более богаты металлами, чем карликовые галактики этого типа. Такое различие связано с особенностями процесса звездообразования в массивных и маломассивных галактиках.

Некоторые из гигантских эллиптических галактик обладают мощным радиоизлучением, источниками которого являются горячий газ и звезды. Наряду с центральным источником радиоизлучения эти галактики имеют протяженные, размером иногда в сотни кпк области радиоизлучения, часто симметрично расположенные по отношению к оптическому изображению галактики. Интенсивность радиоизлучения достигает 1012 LСолнца. Центральной системой скопления галактик в созвездии Персея является cD-галактика NGC 1275, о ней рассказывается в следующей статье настоящего сборника. Одной из самых интересных структурных особенностей радиогалактик являются джеты. Джеты представляют собой тонкие образования. Они начинаются в ядре галактики и тянутся на сотни кпк до границы области радиоизлучения. Радиоизлучение имеет синхротронную природу: в джетах излучают релятивистские электроны, движущиеся в магнитном поле. В оптических спектрах радиогалактик часто наблюдают эмиссионные линии ионизованного водорода. Появление джетов связано с активностью ядер эллиптических галактик. Природа этой активности пока не установлена.

В конце 70-х годов были обнаружены у Е-галактик горячие короны, которые светятся в рентгеновском диапазоне (температура около 107 К). Если газ корон находится в равновесии в гравитационном поле галактики, то массы корон порядка 1012МСолнца. А, например, у галактики М 87 масса короны около 1013МСолнца, ее размер около 200 кпк.

И.К. Розгачева



Судить о том, какие звезды и как часто рождаются в Галактике, астрономы могут лишь косвенно, делая широкие обобщения и опираясь на несовершенную пока теорию. Поскольку химический состав всех молодых звезд приблизительно одинаков, важнейшей характеристикой звезды, определяющей ее структуру и эволюцию, является масса. Подсчеты звезд различной массы возможны лишь в небольшой окрестности Галактики вокруг Солнца. Затем результаты этих подсчетов обобщаются "по принципу подобия" на всю Галактику. Да и вблизи Солнца подсчет молодых звезд очень затруднен тем, что они соседствуют или погружены в непрозрачные облака межзвездного газа.

Яркие массивные звезды обнаружить легче. Об их, присутствии часто судят по косвенным признакам, например по инфракрасному излучению нагретой ими межзвездной пыли или по радиоизлучению ионизованного ими межзвездного газа. Молодые маломассивные звезды, сосредоточенные вблизи галактической плоскости, практически не видны на расстоянии более 1 кпк от Солнца. Поэтому исследовав распределение звезд по массам вблизи Солнца и считая, что везде в Галактике оно остается неизменным, обобщают подсчеты звезд высокой светимости (и массы) на звезды меньших масс.

Прямые подсчеты звезд дают нам некую итоговую картину звездообразования за весь период эволюции Галактики. Если же нас интересует распределение по массам ныне формирующихся звезд, то задача осложняется тем. что продолжительность жизни звезды зависит от ее массы: чем звезда массивнее, тем короче ее век. Поэтому от наблюдаемого распределения звезд переходят к начальному, используя теоретически рассчитанную продолжительность жизни звезд различной массы. Распределение молодых звезд по массам, или начальную функцию звездных масс, часто записывают в виде степенной функции, показатель которой A указывает на долю звезд различной массы в общем звездном населении.

В окрестности Солнца звезды с массами 0,5-10 Мс действительно неплохо описываются степенной функцией с A= 2.35 (такой спектр масс обычно называют салпитеровским, по фамилии астронома, впервые описавшего его в середине 50-х годов). Этому закону подчиняются как звезды, свободно движущиеся в пространстве (их называют звездами поля), так и звезды, объединенные в скопления. В соответствии с салпитеровской функцией масс маломассивных звезд в Галактике рождается сейчас значительно больше, чем массивных, и не только по количеству, но и по доле заключенного в них вещества. Повторим, что полная интенсивность звездообразования (т. е. суммарная масса звезд, родившихся в Галактике за 1 год) оценивается большинством исследователей в 3-5 Мс в год, хотя иногда можно встретить и другие цифры в диапазоне от 1 до 20 Мс в год (сказываются неопределенности в теории и наблюдениях).

Из наблюдений установлено с полной определенностью только существование звезд с массами от 80- 90 Mс до 0,1-0,05 Мс. Но вероятно, в действительности диапазон звездных масс значительно шире. Есть серьезные аргументы в пользу существования очень массивных звезд (от 200 до 2000 Мс), и появляются уже первые наблюдательные данные о существовании карликов с массами 0,04-0,01 Мс. Правда, работы последних лет показывают, что в распределении звезд по массам возможны провалы, т. е. звезды в определенных интервалах масс встречаются крайне редко или вовсе отсутствуют. Возможно также, что для всей совокупности звезд единый закон распределения по массе есть слишком грубое приближение и нужно пользоваться двумя независимыми распределениями для звезд большой и малой массы, соответствующими двум, немного различающимся способам формирования звезд.

При описании теории звездообразования мы увидим, что действительно существуют предпосылки для рассмотрения двух способов зарождения звезд. Это связано с возможностью спонтанного (самопроизвольного) и стимулированного вынужденного развития процесса гравитационной неустойчивости газовой среды. Однако вопросы эти сейчас лишь начинают обсуждаться, и до окончательных выводов еще далеко.

В заключение этой главы познакомимся со звездными агрегатами. Как известно, звезды "не любят" жить поодиночке. Не так давно считалось, что одиночные звезды составляют примерно половину населения Галактики, то теперь очевидно, что такие звезды находятся в явном меньшинстве. Большая часть звезд, судя по всему, двойные, но встречаются и более сложные системы - тройные, четверные… Известна даже одна система, содержащая 6 звезд. Чем больше компонент содержат звездные системы, тем реже они встречаются в пространстве.

Возможно, мы еще просто не натолкнулись на кратные звезды, содержащие 8, 10, 15 компонентов, хотя такие системы, вообще говоря, могут существовать. Кроме двойных и кратных звездных систем, имеющих регулярное строение, существуют и звездные скопления с хаотическим движением членов (раньше такие скопления метко называли звездными кучами).

Принято считать, что в настоящее время в Галактике формируются два типа звездных систем - рассеянные скопления и звездные ассоциации. Разницу между ними видят в том, что скопления более компактны и звезды в них гравитационно связаны, а ассоциации имеют больший размер, низкую пространственную плотность и звезды в них могут свободно разлетаться от общего места рождения, не будучи в состоянии удержать друг друга взаимным тяготением.

Но чем дольше изучаются эти объекты, тем больше накапливается признаков их подобия или уж во всяком случае, их генетической связи. У рассеянных скоплений при внимательном изучении обнаруживаются протяженные звездные "короны", слабо связанные с ядром скопления, а возможно, и потерявшие уже эту связь, но по инерции сопровождающие еще скопление в его галактическом движении. С другой стороны, у звездных ассоциаций, которые сначала были выделены как группировки ярких массивных звезд, при внимательном изучении обнаруживается многочисленное население слабых маломассивных звезд и в некоторых случаях плотное звездное ядро в центре.

Поэтому многие исследователи склонны теперь считать скопления и ассоциации лишь двумя стадиями одного процесса - процесса группового звездообразования, когда часть молодых звезд после своего рождения оказывается в свободном состоянии и быстро рассеивается в пространстве, а другая их часть формирует гравитационно связанную систему и длительное время входит в ее состав. Этот взгляд подтверждается и близкой частотой рождения скоплений и ассоциаций в Галактике. И те и другие рождаются примерно один раз в 2 - 3 тыс. лет.



На затерянном в Индонезийском архипелаге острове Флорес сделаны сенсационные находки. Там обнаружили скелет древней женщины-карлика. Рост существа всего 90 см, по внешнему виду оно напоминает героев книги "Властелин колец" – хоббитов, проживало оно на острове приблизительно 18 тыс. лет назад. Вместе с ней откопали кости еще шести подобных существ, которые жили в промежутке времени от 95 тыс. до 12 тыс. лет назад. Они получили имя Homo floresiensis, по названию острова. Соседями хоббитов были гигантские ящерицы и миниатюрные слоны. Мозг найденных существ, размером с грейпфрут, составлял лишь четвертую часть мозга современного человека. По умственным способностям они приближаются к предчеловеку, который населял Африку более чем 3 млн лет назад. Тем не менее Homo floresiensis мастерили инструменты из камня, объединялись в группы для охоты на животных и пользовались огнем. Исчезли эти загадочные существа внезапно, в результате катаклизма. По геологическим свидетельствам, мощное вулканическое извержение прервало развитие этого вида человека 12 тыс. лет назад, похоронив их на острове вместе со всеми его обитателями. Успели ли они пересечься по времени с распространением современного человека, пока неизвестно. При этом напомним, что недавно ученые выяснили: причинами вымирания человека прямоходящего (Homo erectus) вполне могла быть какая-нибудь агрессия со стороны человека разумного (Homo sapiens). Это важное открытие помогли совершить неприятные, но, как оказалось, чрезвычайно полезные для науки, паразиты – вши. Ученые из Университета Юты определили, что существует два внешне похожих, но генетически различных вида современных головных вшей: один распространен по всему миру, а второй встречается исключительно у американцев. Анализ ДНК показал, что разделение произошло около 1,18 млн лет назад – как раз в тот момент, когда род Homo sapiens откололся от рода Homo erectus. И каждый вид паразитов обитал на своем типе человекообразных. А между тем у гадов, которые копошатся на современных людях, обнаружены гены обоих видов. Из этого ученые сделали вывод, что паразит "перескочил" от прямоходящего к разумному в более позднее время, чем они разделились. Генетическая информация навела исследователей на мысль, что это произошло около 25 тыс. лет назад и, скорее всего, в Азии. Каким образом произошло это переселение, ученые точно сказать не могут. Они предполагают, что Homo sapiens и Homo erectus могли спариваться между собой, носить украденную у соседей одежду, а также вести войны или даже поедать друг друга.



Как появляются звезды, такие, как Солнце? Какие фундаментальные процессы отвечают за то, что темное диффузное межзвездное облако, состоящее из газа и пыли, становится намного более плотным светящимся объектом? Астрономы из США и Европейской южной обсерватории сделали важный шаг на пути к пониманию этого фундаментального вопроса астрономии. Они провели детальные исследования внутренней структуры малого межзвездного облака, известного под названием Barnard 68 (B68). Текущая структура этого облака поддерживается теми же самыми законами физики, которые действуют и в случае звезд. Облако находится во временном состоянии равновесия, когда внутренние силы гравитации противодействуют давлению газа. Но эта ситуация не может сохраняться долго. Если равновесие в таком облаке нарушается, оно начинает сжиматься и превращается в так называемую протозвезду. По мере сжатия плотность и температура в облаке возрастают, а вместе с ними растет и сопротивление сжатию. Если масса протозвезды невелика, ее коллапс может на каком-то этапе остановиться. При этом образуется газовый шар небольших размеров, который называется коричневым карликом. Более массивная протозвезда развивается иначе. На определенном этапе сжатия плотность и температура в ее центре возрастают до такой степени, что здесь начинается термоядерная реакция. С этого момента звезду можно считать родившейся. Такие звезды, окруженные остатками газа и пыли, из которых они образовались, наблюдаются во многих плотных газовопылевых облаках в нашей и других галактиках. Если протозвездное облако вращалось с большой скоростью, остатки газа и пыли образуют у молодой звезды диск, из которого впоследствии может образоваться планетная система. Хорошее понимание процессов рождения звезд и планетных систем тесно связано с детальным знанием и пониманием условий внутри холодных темных межзвездных облаков. Однако такие облака светонепроницаемы, и их физическая структура оставалась загадкой на протяжении всего того времени, как стало известно об их существовании. Последующие фазы рождения из такого облака звезды известны намного лучше. Полученные в ходе исследований облака В68 результаты изменили эту ситуацию. С помощью новой наблюдательной методики исследователи получили возможность детального зондирования внутренней структуры облака. Обнаружено, что средняя плотность монотонно увеличивается к центру. Это согласуется с теоретической моделью, в которой в изолированном сферическом газовом облаке с некоторой температурой его собственные силы гравитации уравновешивают внутреннее тепловое давление. Имея точное физическое описание структуры, с очень высокой точностью (около 3%) можно определить основные параметры облака, такие, как его размер и соотношение газа и пыли. Новая наблюдательная методика основана на измерении излучения звезд, находящихся позади облака. Проходя через облако, излучение поглощается и рассеивается частицами пыли. Этот эффект зависит от цвета (длины волны), и звезды становятся более красными, чем на самом деле. Он также пропорционален количеству затеняющего материала, и, следовательно, наибольшим оказывается для тех звезд, которые расположены позади центральной части облака. Измеряя степень покраснения звезд, наблюдаемых сквозь разные области облака, можно получить таблицу распределения пыли в облаке. Но получение такого распределения является сложной задачей, так как даже малые облака настолько светонепроницаемы, что сквозь них можно наблюдать очень немного фоновых звезд. Только большие телескопы и высокочувствительные приборы способны обнаружить достаточное число звезд для того, чтобы можно было достигнуть значительных результатов.



Народные рецепты красоты
© 2012 Мир народной медицины | Все права защищены.Копирование материалов запрещено
Яндекс.Метрика